PEP™ High Efficiency Motors
Uses up to 15% fewer watts than standard PSC motors.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECM Service</td>
<td>1</td>
</tr>
<tr>
<td>Constant Torque 115 Volt High Voltage Check</td>
<td>2</td>
</tr>
<tr>
<td>Constant Torque 230 Volt High Voltage Check</td>
<td>3</td>
</tr>
<tr>
<td>Constant Torque 24 Volt High Voltage Check</td>
<td>4</td>
</tr>
<tr>
<td>16x4W, PerfectSpeed Voltage Check</td>
<td>5</td>
</tr>
<tr>
<td>16x4W, Wire Low Voltage Check</td>
<td>6</td>
</tr>
<tr>
<td>US Motors 16x4W, Low Voltage Check</td>
<td>8</td>
</tr>
<tr>
<td>PerfectSpeed\textregistered Low Voltage</td>
<td>9</td>
</tr>
<tr>
<td>Motor Troubleshooting</td>
<td>10</td>
</tr>
<tr>
<td>Motor Verification</td>
<td>11</td>
</tr>
<tr>
<td>Inspect Control 3 Pin Connector</td>
<td>13</td>
</tr>
<tr>
<td>Control Unit Verification</td>
<td>14</td>
</tr>
<tr>
<td>Capacitors</td>
<td>15</td>
</tr>
<tr>
<td>Thermistor</td>
<td>16</td>
</tr>
<tr>
<td>Final Check</td>
<td>17</td>
</tr>
</tbody>
</table>
Troubleshooting

• If the motor is running
 • Noisy operation, limit or safety faults, frozen coils
 • Motor may not be the problem
 • Check airflow settings with HVAC OEM guide
 • Check for dirt load on air distribution system components
 • Check for closed dampers, registers and grilles
 • Measure total external static pressure (ESP)
 • Make repairs if total ESP is above HVAC OEM recommended

• If the motor is not running
 • Diagnose motor
 • Always disconnect the power to the HVAC system before disconnecting or reconnecting any connectors to these motors.
 • Two inputs needed for motor operation
 • High voltage constant power source
 • Voltage can be ±10% of rating
 • Always check for proper grounding
 • Communication (Low Voltage)
Troubleshooting

- With power back confirm voltage from control board to motor via motor leads
 - High voltage input
 - 115VAC systems
 - 115VAC required at all times between terminals (L) and (N)
Troubleshooting

• With power back confirm voltage from control board to motor via motor leads
 • High voltage input
 • 230VAC systems
 • 230VAC required at all times between terminals (L) and (N)
Troubleshooting

• With power back confirm voltage from control board to motor via motor leads
 • Low voltage input
 • Check for proper low voltage signals 18-30 VAC
 • Always check voltage between taps 1-5 and (C)
 • Check all modes of operations, only one tap will be energized per mode of Operation (Give time for Delays)
Troubleshooting

- Check the voltage between position 4 and 5 of the power cord connector. Contact HVAC manufacturer if system is rated for 120 VAC power, and the measured voltage between positions 4 and 5 is not 120 VAC.

- Contact HVAC manufacturer if system is rated for 240 VAC power, and the measured voltage between positions 4 and 5 is not 240 VAC.

- Contact HVAC manufacturer if system is rated for 277 VAC power, and the measured voltage between positions 4 and 5 is not 277 VAC.

- If the measured voltages are correct between positions 4 and 5 for the 120 VAC, 240 VAC or 277 VAC system.
Troubleshooting

• Refer to the OEM Service Guide to determine correct supply layout
• With power back on check the voltage between common(s) supply(s) of the power cord connector and the respective signal(s)
• If voltage is not detected recheck at the board.
• In this illustration the commons are at the 1 and 3 positions.

• Check for 24V between a common and the stage being called for.

• Example: for single stage heat you should detect 24V between 1 and 13.

```
<table>
<thead>
<tr>
<th></th>
<th>BLACK - common</th>
<th>RED - delay programmed input</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>“O” - ORANGE</td>
<td>“R” - RED</td>
</tr>
<tr>
<td>10</td>
<td>“HUM” - BLACK</td>
<td>“W1” - BROWN</td>
</tr>
<tr>
<td>11</td>
<td># input - BROWN</td>
<td>“Y2” - YELLOW</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>“G” - GREEN</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>YELLOW - “Y1”</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>PURPLE - adjust programmed input</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>YELLOW/ BLACK</td>
<td></td>
</tr>
</tbody>
</table>
```

16x4 Wire Low Voltage Check
• Specific to US Motors 16 Pin

Reconnect line voltage to motor module
 • Turn off power to system before reconnecting line voltage

• Check the voltage between positions 1 and 4 of the communication cable connector

• Voltage between positions 1 and 4 should be 9-15 Vdc

• Recheck 16 pin connections

• Note: Based on space limitations, the Interface Control Module may be remotely located.
• Check the voltage between positions 1 and 4 of the communication cable connector
• Voltage between positions 1 and 4 should be 9-15 vdc
• Repeat steps for each mode of operation (Heat, Cool, Fan/Circ, etc.).
Motor Troubleshooting

• Remove Control Module from motor based on manufacturers’ instructions

Control Module
• Make sure the motor shaft spins freely, without effort, manually in both directions
 • Replace motor if the shaft does not spin freely without effort manually.

• Inspect connector on back side of motor for bent, damaged, or recessed wires and terminals

• Check phase to phase resistance between each of the three phase terminals in the motor connector
 • Resistance levels between any two contacts should be equal (less than 20 ohms)
 • Resistance between lead 1 and lead 2
 • Resistance between Lead 1 and Lead 3
 • Resistance between Lead 2 and Lead 3
 • If resistance levels are equal the motor is functioning properly
 • Replace motor if the resistance levels are not equal
 • Replace motor if the resistance levels are open circuited or short circuited

Test pin to pin resistance
< 20 ohms +/-10%

Motor Connector
• Inspect the magnets through the back side of motor for broken or chipped magnets on the rotor core
• Replace motor if magnets on the rotor core are broken or chipped
• Disconnect the three-wire motor-to-control harness from the control and remove control unit
 • Inspect for bent, damaged, or recessed wires and terminals inside of connector
 • Replace control unit if 3 pin connector contains bent, damaged or recessed terminals
Control Unit Verification

- Check phase to phase resistance between each of the three phase pins in the harness connector
- Check the resistance between any 2 of the 3 pins
- If the multi-meter indicates resistance levels greater than 100K ohms Motors, Control unit is functioning properly
- If the multi-meter indicates resistance levels are less than 100K ohms for US Motors, others by be different (refer to OEM manual for correct reading)
- Replace control unit
• **Inspect capacitors inside of control unit**
 - Replace control unit if capacitors are bulging or swollen
 - Control unit may have 2 or 4 Capacitors

Example of damaged capacitors
• Inspect the NTC thermistor
 • Inside of control unit for any cracks or breakage
 • Not all control units have a NTC Thermistor
 • Replace control unit if NTC thermistor is cracked or broken
Final Checks

- Check mounting and fastening of motor and control
 - Make sure control unit and motor are securely attached together and mounted tightly in HVAC system
- Check control unit connectors
 - Inspect for shorts, detached wiring, or loose connections.
- Check power cord and signal connections
 - Make sure both are securely connected to control unit connectors.
- Check blower motor and verify wheel rotation
 - Make sure it spins freely manually without effort or assisted means in both directions
- Check circuit breakers
The First Multi-Brand ECM Replacement.

RESCUE Select™ is the new EC motor engineered to replace the X13® or SelecTech® OEM motors. Preprogrammed with the option of programming to match the OEM profile. If you need a replacement,
ASK US — we’ve got your motor.

Rely on US

Nidec Motor Corporation, 2017; All Rights Reserved. U.S. MOTORS® is a registered trademark of Nidec Motor Corporation. Nidec Motor Corporation trademarks followed by the ® symbol are registered with the U.S. Patent and Trademark Office. *All marks shown within this document are properties of their respective owners.
PEP™ High Efficiency Motors
Uses up to 15% fewer watts than standard PSC motors.