5700B ELECTRONICALLY COMMUTATED BLDC MOTOR Ninter All for dreams Merkle-Korff Industries

The 5700B brushless motor offers extended life, high efficiency, and controllability for demanding applications. It can be provided with either a programmable integral drive control or without for connection to external trapezoidal drives. It is featured with a standard NEMA 23 mount.

MOTOR FEATURES

Type: Electronically Commutated Voltage: 12Vdc to 32Vdc Output Power: 45 to 140 Watts with External Drive Phase Connection: 3 Phase Wye Slot / Poles: 12 / 8 Rotor Magnets: High Energy skewed to reduce cogging Insulation Class: F Rotation: Reversible Rotor Positioning: Three Hall Effect Sensors Bearings: Ball Mounting: NEMA 23

INTEGRAL CONTROL FEATURES

Type: Two quadrant trapezoidal programmable Speed Control: 0 to 5Vdc or 0 to 10Vdc Protection: Over current and over temperature Braking: Dynamic Programming Options: Acceleration, velocity, current limit Tachometer Output: 2 Channels – 6 PPR

OPTIONAL FEATURES

- Customized output shafts including dual output
- Various lead lengths, terminals and connectors
- Integral motor control
- Brakes: Electromagnetic
- Encoders: Incremental Optical or Capacitive

TYPICAL APPLICATIONS

- Food Service Equipment
- Satellite positioning systems
- Pellet Stoves
- Agricultural Equipment
- Valve Actuators
- Medical / Laboratory Equipment
- Robotics
- Material Handling
- Factory and Industrial Automation
- Door and Window Automation
- Pumps

5700B ELECTRONICALLY COMMUTATED BLDC MOTOR

Nider _All for dreams 🕷 Merkle-Korff Industries

Model	Output Power (Watts) with Integral Control	Output Power (Watts) without Integral Control	Dimension "A"
5706B	12	45	1.860"[47.24]
5719B	25	100	2.360"[59.94]
5738B	45	140	3.110"[79.00]

Integral Controller: Lead Wire Color Code

Board Position	Designation	Lead Color	
1	Digital I/O "A"	Gray	
2	Digital I/O "B"	White/Red	
3	Direction	White/Black	
4	Signal Ground	Green	
5	Enable Input	Orange	
6	5 Vdc (output)	Yellow	
7	Input Power (12-32Vdc)	Red	
8	Power Ground	Black	
9	Analog Input 2	Violet	
10	Analog Input 1 (speed)	Blue	
11	Tachometer Output "B"	Brown	
12	Tachometer Output "A"	White	

External Controller (Hall Only): Lead Wire

Board Position	Designation	Lead Color	
1	Motor Phase A	Blue	
2	Motor Phase B	White	
3	Motor Phase C	Brown	
4	Hall A	Green	
5	Hall B	Orange	
6	Hall C	Yellow	
7	5 Vdc (Vcc)	Red	
8	Ground	Black	

In order to properly commutate the Merkle-Korff 2.25" BLDC motor, the following table is provided to indicate the required motor phase state for a given hall-effect state.

Direction	120° Hall Spacing		Motor Phases			
(NOTE 1)	НА	НВ	НС	МА	MB	МС
CW	1	0	0	DC+	OFF	DC-
	1	1	0	OFF	DC+	DC-
	0	1	0	DC-	DC+	OFF
	0	1	1	DC-	OFF	DC+
	0	0	1	OFF	DC-	DC+
	1	1	1	DC+	DC-	OFF
cw	1	0	0	DC-	OFF	DC+
	1	0	1	DC-	DC+	OFF
	0	0	1	OFF	DC+	DC-
	0	1	1	DC+	OFF	DC-
	0	1	0	DC+	DC-	OFF
	1	1	0	OFF	DC-	DC+

NOTE 1: Direction viewed from motor shaft (gearbox output shaft rotation may not be the same)