This robust line of gearmotors was designed and engineered for continuous operation, low audible noise and extended life. The GR1 series is intended for use in frozen beverage machines. The 5700B brushless motor offers extended life, high efficiency, and controllability for demanding applications.

GEAR REDUCER FEATURES

Housing Material: Aluminum die cast Gears: Hardened Steel & Thermoplastic Bearings: Ball on gears and output shaft Lubrication: Synthetic Grease Seals: Gasket on gearbox and Lip Seals on Shafts Output speeds: 1 to 55 RPM Duty: Continuous

MOTOR FEATURES

Type: Electronically Commutated Voltage: 12Vdc to 32Vdc Output Power: 45 to 140 Watts with External Drive Phase Connection: 3 Phase Wye Slot / Poles: 12 / 8 Rotor Magnets: High Energy skewed to reduce cogging Insulation Class: F Rotation: Reversible Rotor Positioning: Three Hall Effect Sensors Bearings: Ball

INTEGRAL CONTROL FEATURES

Type: Two quadrant trapezoidal programmable Speed Control: 0 to 5Vdc or 0 to 10Vdc Protection: Over current and over temperature Braking: Dynamic Programming Options: Acceleration, velocity, current limit

Maximum Permissible Torque: 55 In.Lb (6.2 Nm) Speed: Up to 55 RPM

Note: Speed and torque combinations will vary depending on the motor/gearbox combination.

TYPICAL APPLICATIONS

- Food Service Equipment
- Granita and Frozen Beverage Machine Auger
- Soft Serve Gelato Machine Auger

Board Position	Designation	Lead Color	
1	Digital I/O "A"	Gray	
2	Digital I/O "B"	White/Red	
3	Direction	White/Black	
4	Signal Ground	Green	
5	Enable Input	Orange	
6	5 Vdc (output)	Yellow	
7	Input Power (12-32Vdc)	Red	
8	Power Ground	Black	
9	Analog Input 2	Violet	
10	Analog Input 1 (speed)	Blue	
11	Tachometer Output "B"	Brown	
12	Tachometer Output "A"	White	

Integral Controller: Lead Wire Color Code

Board Position	Designation	Lead Color
1	Motor Phase A	Blue
2	Motor Phase B	White
3	Motor Phase C	Brown
4	Hall A	Green
5	Hall B	Orange
6	Hall C	Yellow
7	5 Vdc (Vcc)	Red
8	Ground	Black

Model	Output Power (Watts) with Integral Control	Output Power (Watts) without Integral Control	Peak Torque (Lb.In)
GR1-5706B	12	45	35
GR1-5719B	25	100	35
GR1-5738B	45	140 External Con	itroller (Hall Only): Lead Wi

In order to properly commutate the Merkle-Korff 2.25" BLDC motor, the following table is provided to indicate the required motor phase state for a given hall-effect state.

Direction	120° Hall Spacing		Motor Phases			
(NOTE 1)	HA	НВ	HC	MA	MB	МС
cw	1	0	0	DC+	OFF	DC-
	1	1	0	OFF	DC+	DC-
	0	1	0	DC-	DC+	OFF
	0	1	1	DC-	OFF	DC+
	0	0	1	OFF	DC-	DC+
	1	1	1	DC+	DC-	OFF
cw	1	0	0	DC-	OFF	DC+
	1	0	1	DC-	DC+	OFF
	0	0	1	OFF	DC+	DC-
	0	1	1	DC+	OFF	DC-
	0	1	0	DC+	DC-	OFF
	1	1	0	OFF	DC-	DC+

NOTE 1: Direction viewed from motor shaft (gearbox output shaft rotation may not be the same)