CONTROLLER INSTALLATION MANUAL

HMC- 100 S Series PHC Programmalhle Hydraulic Controller

Compliant with ASME A 17.1 - 2ODD / CSA B44-DO and later codes

EXERCISE EXTREME CAUTION WHEN OPERATING THE ELEVATOR IN THIS MODE

Critical Safety Precautions:

1. ALWAYS connect an individual jumper for each device, so when the device is installed that jumper is removed. Note: NEVER jump out more circuits than necessary when preparing the car to operate or conduct a test.
2. ALWAYS connect the temporary run buttons in the CAR TOP INSPECTION circuits so they have top priority.
3. ALWAYS insert the temporary run button's EMERGENCY STOP SWITCH in the safety circuit between terminals 17 and 18. NOT in series with the ENABLE button.
4. ALWAYS get the GOVERNOR/GOVERNOR SWITCH and SAFETIES/SAFETY OPERATOR SWITCH (plank) operational as soon as possible.

If the door operator, fire service and emergency power are not yet wired:
Remove wire from panel mount terminal DCL
Remove wire from terminal 47 on the SC-SB2K-H board
Jumper from 2 bus to panel mount terminal DPM
Jumper from 2 bus to terminal 36 on the SC-SB2K-H board
Jumper from 2 bus to panel mount terminal EPI (if present)
Jumper from 2F bus to terminal 38 on the SC-SB2K-H board
Jumper from 2F bus to terminal FRSM on the SC-SB2K-H board
Jumper from 2F bus to terminal FRSA on the SC-SB2K-H board
Safeties, door locks and temporary run buttons, jump terminals as follows:
2 bus to 16, 2 bus to INCTI, 9 to 10, 9 to 10X, 9 to 11, 9 to 12, 9 to 12X, 9 to 13, 9 to 86F, 9 to 88F, 16 to 17, 18 to 20, 2CT to CD, 2CT to HD or IDL, 4 to UNL, P1 to P2, remove wires from ACCEN and INICN

If rear doors are present also jump:
2CT to CDR $2 C T$ to HDR
remove wires from 36R, 37R and 47R

2 bus to DPMR
jump 2 bus to 36R

If you have earthquake operation: jumper from CW1 to CW2 and SSI to EQ24
Install Temporary Run Buttons as follows (refer to area \#6 of job prints):
Connect EMERGENCY STOP SWITCH between terminals 17 and 18
Connect ENABLE button to terminal INCTI
Connect UP button to terminal INCTU and ENABLE button
Connect DOWN button to terminal INCTD and ENABLE button
If you encounter any problems with A17.1 (redundancy) faults, refer to Section 5.6.5 for instructions on how to temporarily bypass the faults.

TABLE OF CONTENTS

IMPORTANT PRECAUTIONS AND NOTES viii
SECTION 1
PRODUCT DESCRIPTION
1.0 General Information 1-1
1.1 Car Controller Physical Description 1-1
1.2 Car Controller Functional Description 1-12
1.2.1 Car Operation Control (COC) 1-12
1.2.2 Car Communication Control (CCC) 1-14
1.2.3 Programming and Diagnostics Tools 1-14
1.2.4 Duplexing 1-14
1.3 Landing System Control Box 1-15
SECTION 2
INSTALLATION
2.0 General Information 2-1
2.0.1 Site Selection 2-1
2.0.2 Environmental Considerations 2-1
2.0.3 Recommended Tools and Test Equipment 2-2
2.0.4 the Wiring Prints 2-2
2.1 Controller Installation 2-3
2.1.1 Controller Wiring Guidelines 2-3
2.2 General Wiring Guidelines 2-4
2.2.1 Ground Wiring 2-4
2.2.2 Main Ac Power 2-5
2.2.3 Pump Motor Wiring 2-5
2.3 Hoistway Control Equipment Installation 2-5
2.3.1 Installing the Landing System 2-5
2.3.2 Installing the Hoistway Limit Switches 2-5
2.3.3 Installing the Landing System Control Box (LS-QUTE) 2-6
2.3.4 Installing the Magnetic Strips on the Steel Tape 2-6
2.3.5 Door Position Monitor Switch (If Used) 2-7

SECTION 3
 START-UP SEQUENCE

3.0 General Information 3-1
3.1 Ground Check 3-1
3.2 Before Applying Power 3-1
3.3 Applying Power 3-2
3.3.1 Initial Adjustments and Power Phasing 3-2
3.3.2 Moving the Elevator on Inspection 3-3
3.3.3 Preparing the Car to Run on Automatic Operation 3-4
3.4 Preparation for Final Adjustment 3-4
SECTION 4
FINAL ADJUSTMENT
4.0 General Information 4-1
4.1 Running on Automatic Operation 4-1
4.1.1 Diagnostic Messages and Input/output Signals 4-1
4.1.2 a Few Words about Absolute Floor Encoding 4-2
4.1.3 Registering Car Calls 4-3
4.1.4 Test Mode Operation 4-3
4.1.5 Switching to Automatic Operation 4-4
4.2 Final Adjustments 4-4
4.2.1 Door Operator Adjustments 4-4
4.2.2 Hydraulic Valves 4-5
4.2.3 Slowdown and Limit Switches 4-5
4.2.4 Hall Calls 4-5
4.2.5 Options 4-5
4.2.6 Door Open/close Protection 4-5
4.2.7 Motor Limit Timer 4-5
4.2.8 Valve Limit Timer 4-5
4.2.9 Stuck Button Protection 4-5
4.2.10 Relevel Operation 4-5
SECTION 5
THE COMPUTER
5.0 About the PHC Series 5-1
5.1 The MC-PCA-OA-2K Computer Panel - Your Tool for Programming, Diagnostics and Data Communication 5-1
5.1.1 Indicators 5-1
5.1.1.1 Computer on Light 5-1
5.1.1.2 Vertical Status Indicator Lights 5-1
5.1.1.3 Diagnostics LCD Display 5-2
5.1.2 Switches, Buttons \& Adjustments 5-2
5.1.2.1 Computer Reset Pushbutton 5-2
5.1.2.2 N, S, +, \& - Pushbuttons 5-2
5.1.2.3 Mode Selection F1-F8 Function Switches 5-3
5.1.2.4 LCD Contrast Adjustment Trimpot 5-3
5.1.3 Terminals 5-3
5.1.3.1 Power Supply Terminal 5-3
5.1.3.2 Communication Port for Duplexing 5-3
5.1.3.3 Com Port 1 and 2 5-3
5.1.4 Status Displays 5-3
5.2 Computer Security 5-3
5.2.1 Password 5-4
5.3 Diagnostic Mode 5-4
5.3.1 Getting into Diagnostic Mode 5-4
5.3.2 Function of N Pushbutton 5-4
5.3.3 Function of S Pushbutton 5-5
5.3.4 Function of + Pushbutton 5-5
5.3.5 Function of - Pushbutton 5-5
5.3.6 Format of Lcd Display 5-5
5.3.6.1 Normal Display 5-5
5.3.6.2 Status Message 5-6
5.3.6.3 Elevator Position 5-33
5.3.6.4 Computer Internal Memory 5-33
5.3.7 Troubleshooting Using the Computer's Internal Memory 5-34
5.3.8 Troubleshooting Specific Problems 5-36
5.3.8.1 Problem: the BFD/TFD Error Message Is Flashing on the Display5-36
5.3.8.2 Problems with Calls 5-38
5.3.8.3 Problems with Doors 5-38
5.3.9 Setting Parameters (Options) to Default Values 5-38
5.4 Program Mode 5-39
5.4.1 General Description of Program Mode 5-39
5.4.1.1 Viewing Menus on the Lcd Display 5-39
5.4.1.2 Viewing Options Within a Menu 5-40
5.4.1.3 Changing a Value 5-40
5.4.1.4 Saving the New Values 5-40
5.4.1.5 Restoring Original Values 5-40
5.4.1.6 Step-by-step Example 5-40
5.4.2 Basic Feature Menu Options 5-42
5.4.2.1 Simplex or Duplex? 5-42
5.4.2.2 Operation (Dispatching Operation) 5-42
5.4.2.3 Top Landing Served? (Simplex) / Top Landing for this Car? (Duplex) 5-42
5.4.2.4 Car Doors Are Walk-thru? (Simplex) / this Cars Doors Walk-thru? (Duplex) 5-42
5.4.2.5 Car Serves Frnt/flr 1? (Simplex) / Car Serves Frnt/flr 1? (Duplex) 5-42
5.4.2.6 Car Serves Rear/flr 1? (Simplex) / Car Serves Rear/flr 1? (Duplex) 5-42
5.4.2.7 Parking Floor 5-43
5.4.2.8 Alt. Parking Floor 5-43
5.4.2.9 Secondary Parking Floor 5-43
5.4.2.10 Lobby Floor 5-43
5.4.2.11 Car Identifier 5-43
5.4.2.12 Number of IOX Boards? 5-43
5.4.2.13 Number of 14 O Boards? 5-43
5.4.2.14 Number of AIOX Boards? 5-43
5.4.3 Fire Service Menu Options 5-43
5.4.3.1 Fire Service Operation? 5-43
5.4.3.2 Fire Phase 1 Main Floor 5-43
5.4.3.3 Fire Phase 1 Alt. Floor 5-44
5.4.3.4 Fire Svce. Code 5-44
5.4.3.5 Fire Phase I 2nd Alt. Floor 5-44
5.4.3.6 Bypass Stop Sw. On Phase 1? 5-44
5.4.3.7 Honeywell Fire Operation? 5-44
5.4.3.8 New York City Fire Phase 2 and ANSI 89? 5-44
5.4.3.9 White Plains, NY Fire Code? 5-44
5.4.3.10 Mass 524 CMR Fire Code? 5-44
5.4.4 Door Operation Menu Options 5-44
5.4.4.1 Nudging? 5-44
5.4.4.2 Stuck Photo Eye Protection? 5-45
5.4.4.3 Sequential Door Oper. (F/R)? 5-45
5.4.4.4 Car Call Cancels Door Time? 5-45
5.4.4.5 Nudging During Fire Ph. 1? 5-45
5.4.4.6 Retiring Cam Option? 5-45
5.4.4.7 Pre-opening? 5-45
5.4.4.8 Mechanical Safety Edge? 5-46
5.4.4.9 Nudging Output/buzzer Only? 5-46
5.4.4.10 D.C.B. Cancels Door Time? 5-46
5.4.4.11 Leave Doors Open on PTI/ESS? 5-46
5.4.4.12 Nudging During Fire Phase 2? 5-46
5.4.4.13 Dir. Preference until DLK? 5-46
5.4.4.14 Fully Manual Doors? 5-46
5.4.4.15 Cont. D.C.B. to Close Doors? 5-46
5.4.4.16 Cont. D.C.B. for Fire Ph 1 ? 5-46
5.4.4.17 Moment. D.O.B. Door Opening? 5-46
5.4.4.18 Doors to Open If Parked: 5-47
5.4.4.19 Doors to Open on Main Fire? 5-47
5.4.4.20 Doors to Open on Alt Fire? 5-47
5.4.4.21 Leave Doors Open on CTL? 5-47
5.4.4.22 Limited Door Re-open Option 5-47
5.4.4.23 Reduce Hct with Photo Eye 5-47
5.4.4.24 Leave Doors Open on EPI 5-47
5.4.4.25 Doors to Open If No Demand: 5-47
5.4.4.26 Const. Press Op. Bypass PHE? 5-47
5.4.4.27 Door Type Is Horizontal / Vertical 5-48
5.4.4.28 Front Door Cam Is Retiring / Fixed Type 5-48
5.4.4.29 Rear Door Cam Is Retiring / Fixed Type 5-48
5.4.4.30 Prevent DCP Til Doors Close? 5-48
5.4.4.31 Moment D.C.B. to Close Doors? 5-48
5.4.4.32 Doors to Latch DOF? 5-48
5.4.4.33 Doors to Latch DCF? 5-48
5.4.5 Timer Menu Options 5-48
5.4.5.1 Short Door Timer 5-48
5.4.5.2 Car Call Door Timer 5-48
5.4.5.3 Hall Call Door Timer 5-48
5.4.5.4 Lobby Door Timer 5-48
5.4.5.5 Nudging Timer 5-49
5.4.5.6 Time out of Svce. Timer (Range: 15-120 Seconds or None) 5-49
5.4.5.7 Motor Limit Timer 5-49
5.4.5.8 Valve Limit Timer 5-49
5.4.5.9 Door Hold Input Timer 5-49
5.4.5.10 Parking Delay Timer 5-49
5.4.5.11 Fan/light Output Timer 5-49
5.4.5.12 Hospital Emerg. Timer 5-49
5.4.5.13 Door Open Protection Timer 5-49
5.4.5.14 CTL Door Open Timer 5-50
5.4.5.15 Door Buzzer Timer 5-50
5.4.6 Gongs/lanterns Menu Options 5-50
5.4.6.1 Mounted in Hall or Car? 5-50
5.4.6.2 Double Strike on Down? 5-50
5.4.6.3 PFG Enable Button? 5-50
5.4.6.4 Egress Floor Arrival Gong? / Main Egress Floor \# 5-50
5.4.7 Spare Inputs Menu Options 5-50
5.4.8 Spare Outputs Menu Options 5-55
5.4.9 Extra Features Menu Options 5-58
5.4.9.1 PI Output Type 5-58
5.4.9.2 Floor Encoding Inputs? 5-58
5.4.9.3 Encode All Floors? 5-58
5.4.9.4 Emergency Power Operation? / Emergency Power Return Floor 5-59
5.4.9.5 Light Load Weighing? / Light Load Car Call Limit 5-59
5.4.9.6 Photo Eye Anti-nuisance? / Consec Stops W/O PHE Limit 5-59
5.4.9.7 Peripheral Device? 5-59
5.4.9.8 Automatic Floor Stop Option? / Automatic Stop Floor \#? 5-60
5.4.9.9 CC Cancel W/dir Reversal? 5-60
5.4.9.10 Cancel Car Calls Behind Car? 5-60
5.4.9.11 CE Electronics Interface? 5-60
5.4.9.12 Massachusetts Ems Service? / Ems Service Floor \# 5-60
5.4.9.13 Master Software Key 5-60
5.4.9.14 PI Turned OFF If No Demand? 5-60
5.4.9.15 Hospital Emerg. Operation? 5-60
5.4.9.16 Fire Bypasses Hospital? 5-61
5.4.9.17 High Speed Delay after Run? 5-61
5.4.9.18 Sabbath Operation 5-62
5.4.9.19 Leveling Sensor Enabled/disabled 5-62
5.4.9.20 KCE Enable / Disable 5-62
5.4.9.21 Analog Load Weigher? 5-62
5.4.9.22 IND. Bypass Security? 5-62
5.4.9.23 ATS. Bypass Security? 5-62
5.4.9.24 Car to Floor Return Floor 5-62
5.4.9.25 Scrolling Speed 5-63
5.4.9.26 Low Oil Switch Contact 5-63
5.4.9.27 OFRT Between Floors 5-63
5.4.10 ASME A17.1 2000 Features Menu 5-63
5.4.10.1 Hoistway Access? 5-63
5.4.10.2 Number of Motor Starters 5-63
5.4.10.3 Min. Number of Motors 5-63
5.4.10.4 Soft-stop Timer 5-63
5.4.10.5 Starter \#1 Type 5-63
5.4.10.6 Starter \#2 Type 5-63
5.4.10.7 Starter \#3 Type 5-63
5.4.10.8 Y-D Transfer Timer 5-63
5.4.10.9 Up to Speed Timer 5-63
5.4.10.10 Y-D Open Transn. Timer 5-63
5.4.10.11 M Contactor Installed? 5-63
5.4.10.12 Starter Config 5-63
5.4.10.13 Multiple Valves? 5-64
5.5 External Memory Mode 5-64
5.5.1 Getting into External Memory Mode 5-64
5.5.2 Function of N Pushbutton 5-64
5.5.3 Function of S Pushbutton 5-64
5.5.4 Function of + Pushbutton 5-64
5.5.5 Function of - Pushbutton 5-64
5.5.6 Troubleshooting Using External Memory Mode 5-65
5.6 System Mode 5-68
5.6.1 Building Security Menu 5-68
5.6.1.1 Viewing the Building Security Menu 5-68
5.6.1.2 Programming and Viewing the Security Codes 5-69
5.6.2 Passcode Request Menu 5-70
5.6.3 Load Weigher Thresholds 5-70
5.6.4 Analog Load Weigher Learn Function 5-72
5.6.5 ASME A17.1-2000 Options 5-74
5.6.5.1 Asme A17.1-2000 Redundancy Bypass. Jumper must Be Installed to Activate 5-74
5.6.5.2 Long Term, Inspection Only ASME A17.1-2000 Redundancy Bypass. Jumper must Be Installed to Activate 5-74
5.7 Duplexing 5-75
5.7.1 Dispatching Algorithm 5-75
5.7.2 Hardware Connections 5-75
5.7.3 Troubleshooting 5-75

SECTION 6
 TROUBLESHOOTING

6.0 General Information 6-1
6.1 Tracing Signals in the Controller 6-1
6.2 Door Logic 6-4
6.3 Call Logic 6-8
6.3.1 Normal Operation 6-8
6.3.2 Preparation for Troubleshooting Call Circuits 6-9
6.3.3 Troubleshooting the Call Circuits 6-9
6.4 Car Does Not Move on Inspection or Automatic 6-13
6.5 PC Board Quick References 6-14
6.6 Using the Optional CRT for Troubleshooting 6-19
6.6.1 Graphic Display of Elevator (F3) Screen 6-19
6.6.2 MCE Special Events Calendar Entries (F7-1) Screen 6-19
6.7 Using the MLT / VLT Data Trap 6-22
6.8 ASME A17.1-2000 Fault Troubleshooting Tables 6-24
6.8.1 ASME A17.1 - 2000 Redundancy Fault Established Map 6-24
6.8.2 ASME A17.1-2000 Redundancy Fault Data Trap 6-25
6.8.3 ASME A17.1-2000 SC-HDIO Board Input Data Trap 6-25
6.8.4 Raw ASME A17.1-2000 SC-HDIO Board Input Map 6-26
6.8.5 Additional Flags and Variables Added for ASME 2000 6-27
6.8.6 Formatted ASME A17.1-2000 SC-HDIO Board Input / Output Map 6-28
6.9 Starters - Sequence of Operation Flowcharts 6-30
APPENDIX
APPENDIX A - Original Programmed Values and the Record of Changes A-1
APPENDIX B - Nomenclature A-4
APPENDIX C - Elevator Security Information and Operation A-6
APPENDIX D - Flex-TALK Option A-8
1.0 Introduction And Theory of Operation A-8
2.0 Diagnostics A-8
3.0 Volume Control A-10
4.0 Troubleshooting A-10
5.0 Peripheral Equipment A-10
APPENDIX E - LS-QUTE Landing System Assembly Drawings A-11

TABLES

Table 5.4 Computer Internal Memory Chart 5-33
Table 5.5 Alphabetized Flags/Variables and Their Locations 5-35
Table 5.6 Using the Program Mode 5-40
Table 5.7 Computer External Memory Chart 5-66
Table 5.8 Computer's Hospital Call and Eligibility Memory Chart 5-67
Table 6.1 Special Events Calendar Messages 6-18
Table 6.2 ASME A17.1-2000 Redundancy Fault Established Map 6-22
Table 6.3 Redundancy Fault Established Data Trap 6-23
Table 6.4 ASME A17.1-2000 SC-HDIO Board Input Data Trap 6-23
Table 6.5 RAW ASME A17.1-2000 SC-HDIO Board Input Map 6-24
Table 6.6 Flags and Variables Added for ASME A17.1-2000 6-25
Table 6.7 Definitions for Flags and Variables in Table 6.6 6-25
Table 6.8 Formatted SC-HDIO Board Input / Output Map 6-26
Table D. 1 Diagnostic Table A-12
FIGURES
Figure 1.1 Typical Physical Layout 1-2
Figure $1.2 \mathrm{HC}-\mathrm{PCl} / \mathrm{O}$ Input Output Details 1-3
Figure 1.3 HC-CI/O-E Call Input/Output Board 1-4
Figure 1.4 HC-IOX Input/Output Expander Board 1-4
Figure $1.5 \quad$ HC-I4O Input/Output Expander Board 1-4
Figure 1.6 SC-BAH Lock Bypass, Access, Overspeed, Emergency Brake Board 1-5
Figure 1.7 SC-BAHR Lock Bypass Access Board with Rear Doors 1-6
Figure 1.8 SC-HDIO High Density Input/Output Board 1-7
Figure 1.9 MC-PCA-OA2K Computer Board 1-8
Figure 1.10 MC-PA-2K Peripherals Adapter Board (optional) 1-9
Figure 1.11 SC-SB2K-H Main Safety Relay Board 1-10
Figure 1.12 Board Interconnects for ASME A17.1-2000 Boards 1-11
Figure 1.13 Car Controller Functional Layout 1-13
Figure 1.14 LS-QUTE-2K Car Top Control Box 1-15
Figure 1.15 LS-STAN5-2K Cartop Control Box 1-16
Figure 1.16 LS-STAN7-2K Cartop Control Box 1-16
Figure 2.1 Ground Wiring to Controller Cabinets 2-5
Figure 2.2 SLA Series Phase Monitor Wiring Diagrams 2-7
Figure 5.1 MC-PCA-OA-2K Computer Panel Board Layout 5-2
Figure $6.1 \quad \mathrm{HC}-\mathrm{PCI} / \mathrm{O}$ Power and Call Input/Output Board Quick Reference 6-2
Figure 6.2 SC-SB2K-H Main Safety Relay Board Quick Reference 6-3
Figure 6.3 Door operation flowchart 6-5
Figure 6.4 Door Closing Sequence, Timing and Fault Generation Flowchart 6-5
Figure 6.5 Door Operation Timing Diagram 6-7
Figure 6.6 HC-CI/O Call Input/Output Board Quick Reference 6-10
Figure 6.7 MC-PCA-OA-2K Main Computer Board Quick Reference 6-14
Figure 6.8 MC-PA-2K Peripherals Adapter Board Quick Reference 6-15
Figure 6.9 SC-HDIO High Density I/O Board Quick Reference 6-16
Figure 6.10 SC-BAH Lock Bypass, Access Board Quick Reference 6-17
Figure 6.11 SC-BAHR Lock Bypass, Access Board w/Rear Doors Quick Reference 6-18
Figure 6.12 Graphic Display of Elevator (F3) Screen (Color CRT) 6-19
Figure 6.13 Special Events Calendar - Display Special Event Entries (F7-1) Screen 6-20
Figure 6.14 WYE - DELTA Starter Sequence of Operation 6-30
Figure 6.15 ATL Starter Sequence of Operation 6-31
Figure 6.16 Solid State Starter Sequence of Operation 6-32
Figure 6.17 Standard PC Board Layout 6-33
Figure D. 1 Flex-Talk Board A-11
Figure D. 2 Speaker Dimensions A-13
Figure E. 1 LS QUTE Enclosure Assembly A-14
Figure E. 2 LS QUTE Wiring Diagram A-15

IMPORTANT PRECAUTIONS \& NOTES

We strongly recommend that you read this manual carefully before proceeding with installation. Throughout this manual you will see icons followed by a WARNING, CAUTION, or NOTE. These icons denote the following:

WARNING: Operating procedures and practices which, if not done correctly, may result in personal injury or substantial damage to equipment.

CAUTION: Operating procedures and practices which, if not observed, may result in some damage to equipment.

NOTE: Procedures, practices or information which are intended to be immediately helpful and informative.

The following general rules and safety precautions must be observed for safe and reliable operation of your system.

This controller may be shipped without the final running program. However you may install the unit, hook-up and run your elevator on Inspection operation. Call MCE about a week before you are ready to turn the elevator over to full automatic operation so the running program can be shipped to you.

If you need to change a program chip on a computer board make sure you read the instructions and know exactly how to install the new chip. Plugging these devices in backwards may damage your chip.

Elevator control products must be installed by experienced field personnel. This manual does not address code requirements. The field personnel must know all the rules and regulations pertaining to the safe installation and running of elevators.

This equipment is an O.E.M. product designed and built to comply with ASME A17.1, CAN/CSA-B44.1/ASME-A17.5 and National Electrical Code and must be installed by a qualified contractor. It is the responsibility of the contractor to make sure that the final installation complies with any local codes and is installed safely.

The 3-phase AC power supply to this equipment must come from a fused disconnect switch or circuit breaker that is sized in conformance with all applicable national, state and local electrical codes, in order to provide the necessary overload protection for the Drive Unit and motor. Incorrect motor branch circuit protection will void the warranty and may create a hazardous condition.

Proper grounding is vitally important to the safe and successful operation of your system. Bring your ground wire to the system subplate. You must choose the proper conductor size and minimize the resistance to ground by using shortest possible routing. See National Electrical Code Article 250-95, or the related local applicable code.

Before applying power to the controller, physically check all power resistors and other components inside the controller. Components loosened during shipment may cause damage. Please make sure that all the safety relays on the SCSB2K board are properly seated in their sockets by pushing each relays gently into its socket.

You must not connect the output triacs directly to a hot bus (2, 3 or 4 bus). This can damage the triacs. Pls, direction arrows and terminals $40 \& 42$ are examples of outputs that can be damaged this way. Note: miswiring terminal 39 into 40 can damage the fire warning indicator triac.

The $\mathrm{HC}-\mathrm{PCl} / \mathrm{O}$ and $\mathrm{HC}-\mathrm{Cl} / \mathrm{O}-\mathrm{E}$ boards are equipped with quick disconnect terminals. During the original installation, you may want to remove the terminal connector, hook up your field wires to it, test it for no shorts to ground (1 bus) and to terminals 2, 3 and 4 before plugging these terminals back into the PC boards.

ENVIRONMENTAL CONSIDERATIONS:

Keep the machine room clean. Controllers are generally in NEMA 1 enclosures. Do not install the controller in a dusty area. Do not install the controller in a carpeted area. Keep room temperature between $32^{\circ} \mathrm{F}$ and $104^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$. Avoid condensation on the equipment. Do not install the controller in a hazardous location and where excessive amounts of vapors or chemical fumes may be present. Make sure that the power line fluctuations are within $\pm 10 \%$.

The controller should be installed nearest to the hoist motor, such that length of the connecting wires should not exceed more than 100 feet. If wire from controller to hoist motor is more than 100 feet, contact MCE.

CONTROLLER OR GROUP ENCLOSURES WITH AIR CONDITIONING

If your controller or group enclosure is equipped with an air conditioning unit, observe the following precautions (failure to do so can result in water condensation inside the enclosure):

- Ensure the integrity of the NEMA 12 or 4 enclosure is maintained by using sealed knockouts and by sealing any holes created during installation.
- Do not run the air conditioner unit when the doors are open.
- To avoid damaging the compressor, if the air conditioner is turned off while it is running, wait at least five minutes before turning power on again.
- Observe the manufacture's recommended maintenance and optimum thermostat setting of $75^{\circ} \mathrm{F}$ (see Operator's Manual).
- Ensure the air conditioner unit's drain hose remains open.

LIMITED WARRANTY

Motion Control Engineering (manufacturer) warrants its products for a period of 15 months from the date of shipment from its factory to be free from defects in workmanship and materials. Any defect appearing more than 15 months from the date of shipment from the factory shall be deemed to be due to ordinary wear and tear. Manufacturer, however, assumes no risk or liability for results of the use of the products purchased from it, including, but without limiting the generality of the forgoing: (1) The use in combination with any electrical or electronic components, circuits, systems, assemblies or any other material or equipment (2) Unsuitability of this product for use in any circuit, assembly or environment. Purchasers' rights under this warranty shall consist solely of requiring the manufacturer to repair, or in manufacturer's sole discretion, replace free of charge, F.O.B. factory, any defective items received at said factory within the said 15 months and determined by manufacturer to be defective. The giving of or failure to give any advice or recommendation by manufacturer shall not constitute any warranty by or impose any liability upon the manufacturer. This warranty constitutes the sole and exclusive remedy of the purchaser and the exclusive liability of the manufacturer, AND IN LIEU OF ANY AND ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY AS TO MERCHANTABILITY, FITNESS, FOR PURPOSE SOLD, DESCRIPTION, QUALITY PRODUCTIVENESS OR ANY OTHER MATTER. In no event will the manufacturer be liable for special or consequential damages or for delay in performance of this warranty.

Products that are not manufactured by MCE (such as drives, CRT's, modems, printers, etc.) are not covered under the above warranty terms. MCE, however, extends the same warranty terms that the original manufacturer of such equipment provide with their product (refer to the warranty terms for such products in their respective manual).

SECTION 1
 PRODUCT DESCRIPTION

1.0 GENERAL INFORMATION

MCE's HMC-1000 Series PHC programmable elevator controller is designed to exhibit the characteristics listed below in a hydraulic elevator installation. The Series PHC controller was designed to save time during installation and troubleshooting, but it is still very important that the field personnel who work with this equipment familiarize themselves with this manual before attempting to install the equipment.

PRINCIPAL CHARACTERISTICS

Number of Stops 16
Maximum Number of Cars 2
Field Programmable

Environment:
32° to $104^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$ ambient
$12,000 \mathrm{ft}$ altitude
95\% humidity
EQUIPMENT CATEGORIES - The HMC-1000 Series PHC hydraulic controller consists of three major pieces of equipment:

- Controller Unit
- Car Top Selector (Landing System)
- Peripherals

1.1 CAR CONTROLLER PHYSICAL DESCRIPTION

Figure 1.1 shows a typical layout of the Car Controller in a standard MCE cabinet. A brief description of each block follows:

RELAYS, FUSES,
TERMINAL BLOCKS

1. INPUT/OUTPUT BOARDS - This block consists of a number of different Input/Output boards. The following is a list of boards that could be used in this block:

- HC-PCI/O Power and Call Input/Output board
- $\mathrm{HC}-\mathrm{Cl} / \mathrm{O}-\mathrm{E} \quad$ Call Input/Output board (optional)
- HC-RD
- HC-IOX
- HC-I4O
- SC-BAH
- SC-BAHR
- SC-HDIO Rear Door Logic board (optional) Input/Output Expander board (optional) Input/Output Expander board (optional) Lock Bypass, Access. SC-BAH with Rear Doors
High Density I/O board for A17.1-2000
Note that the HC-CI/O-E, HC-RD, HC-IOX and HC-I4O boards are optional and may be required depending on system requirements (i.e., number of landings served).

HC-PCI/O Power and Call Input/Output board - This board provides the following:

- 22 input signals
- 12 output signals
- PI output terminals
- 2 gong output terminals
- 10 call input and output terminals
- 2 direction arrow output terminals
- 1 passing floor gong output terminal

For details of each input and output signal and the associated terminals, see Figure 1.2.
FIGURE 1.2 HC-PCI/O Input Output Details

HC-CI/O-E Call Input/Output Board - This board provides:

- 4 Pl output terminals
- 12 call input and output terminals

FIGURE 1.4 HC-IOX Input/Output Expander Board

HC-IOX Input/Output Expander Board - This is a multi-purpose input/output board designed to accommodate additional inputs and outputs as required, such as floor encoding signals, etc.

FIGURE 1.5 HC-I4O Input/Output Expander Board

HC-I4O Input/Output Expander Board - This is a multi-purpose input/output board designed to accommodate additional inputs and outputs as required.

HC-RD Rear Door Logic Board - This board (not shown) provides the inputs and outputs required for independent rear doors.

SC-BAH Lock Bypass, Access, Overspeed, Emergency Brake Board - This board contains inputs, logic and outputs that perform the lock bypass function and inspection access operation. The Car Door and Hoistway Door bypass switches are located on this board. Five test pins on the board (TP1, TP2 and TPAB) are available for inspection and testing of the redundancy checking logic for the force-guided (safety) relays. Refer to Chapter 4 for testing procedures.

FIGURE 1.6 SC-BAH Lock Bypass, Access, Overspeed, Emergency Brake Board

SC-BAHR (SC-BAH with Rear Doors) Lock Bypass, Access, Overspeed, Emergency Brake Board - This board is the same as the SC-BAH with additional logic and relays for rear doors.

SC-HDIO High Density Input/Output Board - This board handles the inputs and outputs that are associated with ASME A17.1-2000 code compliance. As there are no customer connections or adjustments on this board, it has been mounted behind the logic boards in the upper left-hand corner of the controller enclosure.
2. MC-PCA-OA2K Main Computer Board - This board is mounted on the top of the HC-PCI/O board (see Figure 1.1). The main computer board is responsible for:

- Car Operation Control
- Car Communication Control
- Duplexing
- Programming and Diagnostic Tools
- Redundancy Cycle Testing
- Software System Validation

FIGURE 1.9 MC-PCA-OA2K Computer Board

NOTE: The main Processor used with ASME A17.1-2000 code compliant products is different from the standard MC-PCA-OA. The part number on the 2000 compliant board should be MC-PCA-OA2K. Any reference to the MC-PCA or MC-PCA-OA in this manual, refers to the MC-PCA-OA2K.

3. MC-PA-2K Peripherals Adapter Board - The optional MC-PA-2K board contains the COM ports used for serial communication with peripherals such as CRTs and PCs through direct connection or through line drivers or modems. This board also stores the events displayed on the Special Events Calendar screen on a peripheral device.
4. POWER SUPPLY - The power supply is a single output linear power supply that provides +5 VDC power to the computer and its peripheral boards.

5. SC-SB2K-H Main Safety Relay Board - This board satisfies many of the ASME A17.1 - 2000 code requirements for "safety" relay contact redundancy and the requirements for normal terminal stopping devices. It also provides the necessary circuitry for running the car on Machine Room Inspection operation. This board, along with the SC-HDIO, SC-BAH and HC-PCI/O board, comprise the high voltage interface between the MC-PCA-OA2K computer and the individual car logic functions such as door operation, direction outputs, direction sensing, pump and valve control, main safety circuits, leveling circuitry, redundancy cycle testing, etc. A TEST/NORMAL switch, MACHINE ROOM INSPECTION UP/DN switch and a MACHINE ROOM INSPECTION TRANSFER INSP/NORM switch are provided on this board. Test pins on the board are available for inspection and testing of the redundancy checking logic for the forceguided (safety) relays. Refer to Chapter 4 for testing procedures.

(4) Warning: Please verify the connector labels before connecting the ribbon cables to the PCBs. The physical location of the connectors on the board may be different than shown here.

6. Transformers - Transformers are usually located in the lower part of the cabinet.
7. Starter - The starter is usually located in the lower right-hand corner of the controller cabinet along with the associated terminal blocks for motor connections.
8. Relays, Fuses and Terminal Blocks - This block contains door operator circuitry, terminal blocks (for customer wiring), fuse holders, fuses, and any other circuitry needed for a specific job.

1.2 CAR CONTROLLER FUNCTIONAL DESCRIPTION

Functionally, the Control Unit is divided into two primary sections. Each section consists of the following functional blocks, as shown in Figure 1.13:

Computer Section

- Car Operation Control

Power Section

- Car Communication Control
- Door Circuits
- Duplexing
- Programming and Diagnostics Tools
- Safety Checks and Redundancy Cycle Testing

1.2.1 CAR OPERATION CONTROL (COC)

Normal Operation - Normal car operation consists of responding to hall and car call demands, and operating the doors, as required.

Special Operations - The following are special operations controlled by the COC:

- Inspection/Access
- Independent Service
- Fire Service
- Emergency Power
- Safety Checks and Redundancy Cycle Testing

For details of each operation, see MCE Specifications for Elevator Products. The special features and options are discussed in Section 5 of this manual.

Discussion of Car Operation Control (COC) - The Car Operation Control (COC) performs the elevator logic operations for the individual car. These functions are performed by the following circuit boards:

- SC-SB2K-H Main Safety Relay board
- MC-PCA-OA2K Main Processor board
- HC-PCI/O Power Input/Output board
- HC-CI/O-E Call Input/Output board (optional)
- HC-RD Rear Door board (optional)
- HC-IOX Input/Output Expander board (optional)
- HC-I4O Input/Output Expander board (optional)
- SC-BAH Lock Bypass, Access
- SC-HDIO High Density I/O board

The heart of the COC is the SC-SB2K-H (Main Safety Relay) board, which makes it possible to move the car and satisfies code required safety functions and redundant relay backup functions. Except for calls, most of the individual elevator inputs and outputs are handled through the Main Safety Relay board and are routed to the HC-PCI/O and SC-HDIO boards, which are the main interface to the computer.

Provisions for 4 position indicator outputs are on the HC-PCI/O board. If additional position indicators are required, HC-PIX boards are added as required. If independent (walk-through) rear doors are required, the HC-RD board acts as the interface between the computer and the Rear Door Relay board, which handles all functions associated with the rear doors. Some additional inputs and outputs such as load weighers are handled through the HC-PCI/O board. Car calls and hall calls are interfaced to the computer through the HC-PCI/O board and HC$\mathrm{CI} / \mathrm{O}-\mathrm{E}$ boards, which can handle up to 4 landings per board. Therefore, all the input/output
boards (HC-PCI/O, HC-RD, HC-IOX, HC-I4O, SC-HDIO and HC-CI/O-E) act as the interface between the MC-PCA-OA2K Main Computer board and the user. These input/output boards are linked to the HC-PCI/O and SC-HDIO boards through ribbon cables. A connector on the back of the MC-PCA-OA2K board plugs into the HC-PCI/O board. The MC-PCA-OA2K board contains the main elevator software system that is constantly monitored for correct functioning.

1.2.2 CAR COMMUNICATION CONTROL (CCC)

The Car Communication Control (CCC) coordinates communication between the individual car controllers in a duplex configuration, as well as peripheral devices such as modems, printers, CRT terminals, etc. These functions are performed by the MC-PCA-OA2K Main Computer board.

1.2.3 PROGRAMMING AND DIAGNOSTICS TOOLS

The PHC is a versatile hydraulic controller and is compatible with most applications. This means it allows the user to customize the controller to the building requirements after the unit has been installed. The Programming Tool is part of the processing unit (MC-PCA-OA2K computer board). The list of all of the programmable functions and variables are provided in Section 5 of this manual.

1.2.4 DUPLEXING

Each car is capable of seeing the hall calls and at any time performing the duplexing functions, but only one of the cars can process the hall calls and make hall call assignments. If the car that is performing the duplexing operation goes out of service, the other car will take over the hall call registration and assignment.

1.3 LANDING SYSTEM CONTROL BOX

The Landing System is designed to be mounted on the car top. There are two types of landing systems that can be used with Series PHC controllers: LS-STAN-2K and LS-QUTE-2K.

LS-QUTE-2K - The LS-QUTE-2K is a tape-and-magnet-operated landing system, with a three inch wide steel tape mounted in the hoistway (Figure 1.14). The car top control box has a floating head that slides on the steel tape, and magnetic sensors for slow down, STU, STD, ISTU, ISTD, LU, LD and DZ. Controllers are configured for Absolute Floor Encoding (AFE). Refer to Appendix E, LS-QUTE-2K Landing System Assembly Drawings, for more information.

FIGURE 1.14 LS-QUTE-2K Car Top Control Box

LS-STAN-2K - The LS-STAN-2K is the standard landing system. The car top control box uses VS-1A infrared proximity switches to sense vanes that are mounted in the hoistway (Figures 1.15 and 1.16).

FIGURE 1.15 LS-STAN5-2K Cartop Control Box

FIGURE 1.16 LS-STAN7-2K Cartop Control Box

SECTION 2

INSTALLATION

2.0 GENERAL INFORMATION

This section contains important recommendations and instructions for site selection, environmental considerations, installation guidelines and other factors that will help ensure a successful installation.

2.0.1 SITE SELECTION

To help choose a proper location for the controller, consider the following factors:

- Provide adequate working space for comfort and efficiency.
- Mount the controller in a logical location, taking into consideration the location of other equipment in the machine room and proper routing of electrical power and control wiring. Note that MCE controllers do not require rear access.
- Do not install the controller in a hazardous location.
- Provide adequate space for future expansion, if possible.
- If any areas in the machine room are subject to vibration, they should be avoided or reinforced to prevent the controller from being adversely affected.
- Provide adequate lighting for the control cabinets and machines in the machine room. Providing a good working space such as a workbench or table is recommended.

2.0.2 ENVIRONMENTAL CONSIDERATIONS

There are some important environmental considerations which when observed, increase the longevity of the elevator equipment and reduce maintenance requirements. These are:

- Provide an ambient temperature that will not exceed 32° to $104^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$. Operation at higher temperatures is possible, but not recommended, because it will shorten the life of the equipment. Adequate ventilation and possibly air conditioning may be required.
- The air in the machine room should be free of excessive dust, corrosive elements or excessive moisture to avoid condensation. A NEMA 4 or NEMA 12 enclosure would help meet these requirements. If open windows exist in the machine room, locate the controller away from the windows so that severe weather does not damage the equipment.
- High levels of radio frequency (RF) radiation from nearby sources may cause interference to the computers and other parts of the control system. Using hand-held communication devices in close proximity to the computers may also cause interference. The controller is designed to EN12015 and EN12016 RFI susceptibility and radiation standards.
- Power line fluctuation should not be greater than +/-10\%.

2.0.3 RECOMMENDED TOOLS AND TEST EQUIPMENT

For proper installation, use the following tools and test equipment:

- A digital multimeter, Fluke series $75,76,77$ or equivalent
- A hand-held tachometer
- A clamp-on AC ammeter
- Hand-held radios
- A telephone
- Test weights
- Pressure gauge
- Soldering tools, a flashlight and an MCE screwdriver (provided with controller).

2.0.4 THE WIRING PRINTS

Become familiar with the following information as well as the wiring prints provided with this control system.

DRAWING NUMBER FORMAT - Each print has a drawing number indicated in the title block. The drawing number is comprised of the job number, car number and page number (see example). In this manual the drawings will often be referred to by the last digit of the drawing number (page number). The following is the drawing number format currently in use.

	Job Number	Car Number*
		2001012
		Page Number**
		Car Number " G * Page Number * an "X" after the

NOTE: DRAWING NAME - Some drawings have a drawing name directly above the title block or at the top of the drawing. The drawing name may be used to refer to a particular drawing.

NOMENCLATURE - The following is an example of the schematic symbols use to indicate that a signal either enters or exits a PC board.

A listing of PC boards and their designator numbers plus other schematic symbols used in the wiring prints can be found at the beginning of the Job Prints and in Appendix B of this manual.

- Become familiar with the "Elevator Car Wiring Print" drawing number-1.
- Become familiar with the "Elevator Hoistway Wiring Print" drawing number -2.
- Become familiar with page -7 of the job prints for duplex interconnect wiring if this application is duplexed.
- The power connections and power supplies are shown in drawing number -3.
- Review any additional wiring diagrams and details.
- The remainder of the job prints are detailed drawings of the HMC-1000-PHC programmable hydraulic control system.
- A specific part of a schematic may be referenced by the Area Number, which is found at the left-hand margin of the schematic.

2.1 CONTROLLER INSTALLATION

Mount the controller securely to the machine room wall or other appropriate location and cut holes to install a raceway or conduit to permit the routing of wires into the cabinet. Note that the standard MCE control cabinet does not require rear access.

CAUTION: Do not allow any metal chips or drill shavings to fall into the electronics.

2.1.1 CONTROLLER WIRING GUIDELINES

NOTE: Pay very close attention to the hierarchy of the inspection inputs. In order to maintain safe operation of the lift while on access, car top or in car inspection, the inspection circuits must be wired as shown in the prints.
a. PC boards can be easily damaged by Electrostatic Discharge (ESD). Use a properly grounded wrist strap when touching the PC boards.

Do not touch PC Boards unless you are properly grounded.

b. Bring wires in from a location that allows the use of the wiring duct inside the controller to route the wires. The terminals are found conveniently near wiring ducts.
c. When routing field and/or power wiring, avoid the left side of the $\mathrm{HC}-\mathrm{Cl} / \mathrm{O}-\mathrm{E}$ and $\mathrm{HC}-\mathrm{PCI} / \mathrm{O}$ boards as well as simply staying clear of the upper left area of enclosure.
d. When connecting wires to the controller, connect the wires according to the hoistway and car wiring diagrams.
e. If the car is part of a duplex system, there are a number of details relating to the wiring of the interconnects between the individual cars. They are as follows:

1. A separate conduit or wiring trough must be provided for the high-speed serial link between the MC-PCA-OA-2K computers in each controller cabinet.
2. The wiring details for the high-speed communication link are fully detailed in the drawing titled "Instructions for Connection of High Speed Communication Cables" in the job prints. Follow these instructions exactly. Again, note the requirement for routing the high-speed interconnect cables through a separate conduit or wiring trough.
3. If applicable, also wire according to the drawing titled "Duplex Interconnects to Individual Car Cabinets" in the job prints. Make sure to ground all of the cabinets according to Section 2.2.1.

2.2 GENERAL WIRING GUIDELINES

Basic wiring practices and grounding requirements are discussed in this section.

2.2.1 GROUND WIRING

To obtain proper grounding, quality wiring materials and methods should be used.
All grounding in the elevator system must conform to all applicable codes. Proper grounding is essential for system safety and helps to reduce noise-induced problems. The following are some grounding guidelines:

- The grounding wire to the equipment cabinet should be as large as, or larger than, the primary AC power feeders for the controller and should be as short as possible.
- The grounding between equipment cabinets may be branching or a daisy chain, but the wire must terminate at the last controller and NOT loop back (see Figure 2.1).

FIGURE 2.1 Ground Wiring to Controller Cabinets

(a) Acceptable

(b) Acceptable

(c) Not Acceptable

- Direct solid grounding must be provided in the machine room to properly ground the controller and the motor. Indirect grounding, such as the building structure or a water pipe, may not provide proper grounding and could act as an antenna radiating RFI noise, thus, disturbing sensitive equipment in the building. Improper grounding may also render an RFI filter ineffective.
- The conduit containing the AC power feeders must not be used for grounding.

2.2.2 MAIN AC POWER

Main AC power supply wiring size must be determined by the electrical contractor. Proper motor branch circuit protection must be provided according to applicable electrical codes in the form of a fused disconnect or circuit breaker. Each disconnect or breaker must be clearly labeled with the elevator number.

2.2.3 PUMP MOTOR WIRING

Connect the pump motor for the proper configuration shown on the wiring diagrams. Connect the pump motor leads to the proper terminals on the controller.

2.3 HOISTWAY CONTROL EQUIPMENT INSTALLATION

This section covers the recommended procedures for installing the landing system, terminal slowdown switches, directional limit switches, hoistway access switches (if required), the hoistway access limit switch, and the emergency terminal slowdown switch.
2.3.1 INSTALLING THE LANDING SYSTEM - Refer to the installation drawings for the type of landing system provided.

2.3.2 INSTALLING THE HOISTWAY LIMIT SWITCHES

a. The terminal landing slowdown switches should be installed and adjusted to open approximately one inch beyond the point where a normal slowdown is initiated.
b. The direction limit switches should be installed and adjusted to open approximately one inch beyond the terminal landings.
c. The emergency terminal slowdown switch (if required) should open after the direction limit is open, but before striking the stop ring. Install and adjust the switch where it will not interfere with Inspection or Automatic operation while leveling or releveling. It must also be adjusted to achieve the required operation according to the applicable elevator code.
d. Ensure that the cam that operates the slowdown and limit switches maintains the terminal slowdown switch open until the direction limit switch and emergency terminal slowdown switches (if required) are open.
e. Ensure that the terminal slowdown, direction limit and emergency terminal slowdown switches are held open for the entire runby or overtravel of the elevator.
f. The hoistway access limit switch (if required) should be installed and adjusted to open and stop the elevator (in the down direction), when the top of the elevator is approximately level with the top landing (when the top hoistway access switch is activated while on Access or Inspection operation).
2.3.3 INSTALLING THE LANDING SYSTEM CONTROL BOX (LS-QUTE) - Refer to the drawings in the job prints.

- The location for the landing system box should have already been selected.
- Holes are available on both sides and on the bottom of the landing system box for mounting to any support brackets or structural channels. The mounting of the box should be very firm and solid so that knocking it out of alignment should be difficult. Use 1/4-20 hardware.
- To install the tape into the tape guides on the LS-QUTE landing system box, remove the 2 thumbscrews on the 2 guide assemblies, insert the tape and reinstall the guides with the thumbscrews (tighten firmly). If the installation has the LS-QUTE car top selector with the additional sensor bracket on the rear of the tape, first remove the three $8-32$ screws holding the protective 1 " wide channel. This channel covers the back of the Door Zone sensors on the upper tape guide bracket. Remove the single standoff that is in the way of the thumbscrew holding the tape guide. Remove the thumbscrews holding the upper and lower tape guides, insert the tape, and reinstall the guides with the thumbscrews (tighten firmly). Reinstall the standoff (do not over-tighten) and the protective channel.
- After inserting the steel tape into the tape guides, check the location of the landing system box. The car should be at the top of the hoistway to make it easier to see if the alignment is causing any stress or binding on the tape guides. Make sure that the box is vertical and plumb with the tape. This allows for easy tape movement and avoids excessive wear on the tape guides (using a level is helpful). Be careful so as to avoid premature failure of the tape guides.
- Move the elevator to the top and bottom of the hoistway to check for smooth tape movement and to make sure that there is no excessive pressure on the tape guides. Correct any problems immediately.

2.3.4 INSTALLING THE MAGNETIC STRIPS ON THE STEEL TAPE

Carefully, read and follow the Magnet Installation instructions in the job prints, but read the rest of these instructions before proceeding.
a. Before installing the magnets, clean the steel tape thoroughly with an appropriate solvent. No oil should be left on the tape as it will interfere with the adhesive backing on the magnets.
b. There are normally five lanes of magnets installed on the side of the tape facing the car. One lane consists of only the LU/DZ/DZX/LD and requires that a 6 -inch magnet be installed at each floor. The other lanes have magnets which initiate slow downs or act as AFE set points (remember Absolute Floor Encoding?).
c. If the installation has rear doors, it may have an LS-QUTE landing system which has additional Door Zone sensors on the rear of the upper tape guide assembly. Follow the Magnet Installation instructions in the job prints and install the front and rear Door Zone magnets on the steel tape as shown.

2.3.5 DOOR POSITION MONITOR SWITCH (IF USED)

If you are in a jurisdiction where ASME A17.1-1996 or later is being enforced, Door Position Monitor switch(s) connected to the DPM and/or DPMR inputs, must be added to monitor the position of the closed doors. This must be a separate physical limit switch that makes up approximately 1 to 2 inches before the doors lock.

SECTION 3
 START-UP SEQUENCE

3.0 GENERAL INFORMATION

This section discusses preparing the car to run on Inspection operation and covers the sequence of applying power to the controller and its associated components and verifying proper phase sequence and motor rotation. It also covers completing the initial adjustment of the system to get basic car movement on Inspection operation.

3.1 GROUND CHECK

Do a ground test before powering up the system. Set the meter on the RX1 range (100 to 200 ohm range). Take all measurements with respect to the 1 -bus, which is also referred to as the system common elsewhere in this manual.

NOTE: A short to ground is defined as having a resistance of less than 20 ohms between the 1-bus (common) and the terminal being checked.
a. Remove the F4 fuse in the individual car controller cabinet. If the system is a duplex and/or fire recall system, consult the schematics and remove the fuse that powers terminals 2H (Hall Call Power) and/or 2F (Fire Recall System). Check for shorts to ground on the 2 H and 2 F terminals.
b. Check for shorts to ground on all terminals on the bottom of the SC-SB2K-H board (Main Safety Relay board). Terminal 1 is the only terminal that should be grounded.
c. Check for shorts to ground on all terminals on the HC-PCI/O (and HC-CI/O-E boards, if present).
d. Check for shorts to ground on door operator terminals. Consult the job prints to determine which fuses to remove.

3.2 BEFORE APPLYING POWER

NOTE: These instructions assume adequate electrical troubleshooting experience. Follow the procedure carefully. If the elevator does not respond correctly, check the circuits according to your ability. Proceed cautiously. Read these instructions all the way through to become familiar with the procedure before starting the work.
a. Unplug the screw terminal blocks from the HC-PCI/O and any HC-IOX or HC-CI/O-E boards by moving the blocks toward the right. This is done to avoid damaging the boards by an accidental shorting of output devices to one of the power buses (terminals 2, 3, or 4) during the first powering up of the system.
b. With all power OFF, remove one side of the ribbon cable connecting the $\mathrm{HC}-\mathrm{PCl} / \mathrm{O}$ board at connector C 1 , by pushing the two latches on C 1 open and removing the ribbon cable.
c. In the following instructions, it is assumed that all hoistway doors are closed, but not necessarily locked, and all hoistway and machine room wiring is complete. The hoistway limit switches must be adjusted to the manufacturer's specifications. Correct any malfunction before continuing further.

3.3 APPLYING POWER

3.3.1 INITIAL ADJUSTMENTS AND POWER PHASING

It is necessary to bypass the A17.1-2000 fault logic to get temporary operation of the lift. On the SC-SB2K-H board, turn the MACHINE ROOM INSPECTION TRANSFER switch to INSP. Then place a jumper between the single pin terminals labeled 2KBP1 and 2KBP2 on the SCBAH board. We must also invoke a software "switch" to fully bypass the A17.1-2000 faults. To do this, the controller must be in system mode (see Section 5.6). Once in system mode, select menu option ASME A17.1-2000 REDUNDANCY BYPASS (see Section 5.6.5.2). Use the \mathbf{S} push button to set BYPASS ON. The car will now run indefinitely without any nuisance shutdown due to any A17.1-2000 fault monitors. When the car is ready for automatic operation, remove the jumper between 2KBP1 and 2KBP2 to reinvoke the A17.1-2000 fault monitors.

CAUTION: Please exercise extreme caution when the fault monitors are bypassed and the jumper is in place between terminal 2 and 9.

a. Install a jumper wire between terminal 2 and 9 on the SC-SB2K-H board to override the gate switch, door locks and entire safety string. Exercise extreme caution.
b. On the SC-SB2K-H board, turn the TEST/NORM switch to TEST. For jobs with a two pole IN-CAR inspection switch, temporarily remove and insulate any wire in terminal ACCN and label it so that it may be reinstalled later. Install a temporary jumper from terminal 2 to terminal ACCN to bypass the Inspection Switch (COP Access Enable). For jobs with a three pole IN-CAR inspection switch, temporarily remove and insulate any wire in terminal INICN and label it so that it may be reinstalled later. Install a temporary jumper from terminal 2 to terminal INICN to bypass the Inspection Switch (COP Access Enable).

> WARNING: If the wire to terminal ACCN (or INICN) is not removed (step 'b' above) and the jumper is installed between terminals 2 and ACCN (or INICN), this will bypass the complete safety string.
c. Check the line side of the main power disconnect switch to make sure that all three legs are at the correct voltage.
d. If a field wire is connected to terminal ACCN on the SC-SB2K-H board, temporarily remove the wire, label and insulate it. This will disable the Car Top Inspection switch. Now place a jumper between 18 and ACCN on SC-SB2K-H.
e. Reinstall fuse F4 to enable the primary controller relay voltage.
f. Turn ON power to the controller by closing the machine room disconnect switch.
g. Check pump motor rotation by placing a jumper between 2-bus and terminal P1 on the SC-SB2K-H board. Replace relay YP with a push button type and briefly push in relay YP and note motor rotation. If the rotation is not correct, reverse any two of the three leads at the main disconnect switch. If an RP (Reverse Phase) sensor is provided and the sensor contact does not close when power is applied to the controller (indicated by a light on the sensor that comes on when phase rotation is correct), then 2 of the 3 AC wires that connect to the RP sensor may have to be reversed. Remove jumper between 2-bus and P1.
h. Since the C1 connector between the SC-SB2K-H and the HC-PCI/O boards has already been disconnected, the LCD display should show that the SAFETY STRING is open by flashing in the upper right-hand corner of the controller. The SAFETY ON light will also be off.

NOTE: Pin 1 on both the ribbon cable connector and the header on the HC$\mathrm{PCI} / \mathrm{O}$ board must match. These are designated with arrows on the connector and header. Press the connector in until the latches snap, securing the connector in place.
i. Reinsert the C 1 ribbon cable.
j. To provide for an immediate stop once direction is released, place the "Soft Stop" Jumper (JP53 on the SC-SB2K-H board) in the OFF position.

NOTE: The HMC-1000 Controller is equipped with an INSP. SPEED HI-LO switch to allow the car to be run at either high or low speed on car top Inspection or hoistway Access operation. For these operations the car should NOT be run at high speed if the contract speed is greater than 150 fpm .

3.3.2 MOVING THE ELEVATOR ON INSPECTION

a. Turn OFF power at the main disconnect and reinstall fuses F4, F7 and F8 (and any other fuses that may have been removed during the ground check). Also reinsert the C 1 ribbon cable if not already re-connected.
b. Turn $O N$ the power at the main disconnect. If the LCD display reads -SAFETY- the car will not run. The LCD display should indicate -INSPECTION- and the LEDs Safety On, Doors Locked and Inspection Access on the MC-PCA-OA2K board should be ON.
c. Move the car up and down with the Relay Panel Inspection UP/DN switch. The following relays must pick: SAFR1, SAFR2, and for up direction these must pick: US, UST, YP, MP, DELP, Y, and DEL then BB and DELTA. If YP and DELP are not picked, check to see that relays IN1 and IN2 have dropped out (de-energized). If no relays are picked, check the F4 fuse and check to see that there is 120VAC between terminals 1 and 2. If SAFR1 and SAFR2 are picked and YP is not, check the starter overload contacts. If SAFR1 and SAFR2 are not picked, briefly jumper 2 to 20 (bypasses the safety string). If SAF picks with the jumper, then the trouble is in the safety string. If SAF still does not pick, check the RP sensor again.
d. Adjust the TRANSFER timer (see timer menu in chapter 5) to transfer from WYE to DELTA (Y and DEL in jobprints) just as the pump motor reaches maximum rpm from a dead stop. For ATL (across the line) motors adjust TRANSFER to delay pick of valves until after pump motor is running at speed.
e. On the SC-SB2K-H Main Safety Relay board, place the INSP. SPEED HI-LO switch in the LO position and adjust the valves for proper low speed operation.

3.3.3 PREPARING THE CAR TO RUN ON AUTOMATIC OPERATION

a. Turn OFF the power at the main disconnect.
b. Complete and finalize installation and all wiring. Connect the field wires for the car calls, hall calls and Pls to their respective terminals (remember that the plug-in terminals have yet to be inserted into the boards). Connect one probe of the meter to the 1 -bus and with the other probe, check all of the call and PI terminals for shorts to ground. Connect the common probe of the meter to the 2,3 and 4 buses sequentially while checking for shorts to the call and PI terminals.
c. Turn ON power at the main disconnect and probe (DVM set for 120 VAC) on the call and Pl terminals again. This time, check to make sure that there is no voltage present on any of the PI terminals with respect to the 1-bus. Jumper each of the call terminals one-by-one to ground or terminal 1. Verify that no fuses blow, especially F4. Turn OFF the power at the main disconnect.
d. Plug the call and PI terminals back into the appropriate boards.
e. Place all switches on Normal and put the Car Top Inspection switch on Inspection. Remove the jumper from terminal 18 to ACCN and put the field wire back into terminal ACCN on the SC-SB2K-H board. With the power on, verify that no AC voltage exists on terminal ACCN with respect to the 1-bus. Note that Car Top Inspection prevents Relay Panel Inspection operation by simply removing power from terminal ACCN.

3.4 PREPARATION FOR FINAL ADJUSTMENT

a. The door operator must be operating properly with all door equipment (clutches, rollers, etc.) properly adjusted with the correct running clearances.
b. Make sure the car doors are closed and that all hoistway doors have been closed and locked. Run the car on Inspection through the hoistway to make sure that the hoistway is completely clear. Check to see that the landing system has been installed according to the installation instructions. Place the car at the bottom of the hoistway.
c. Turn the TEST/NORM switch on the SC-SB2K-H board in the TEST position.

SECTION 4 FINAL ADJUSTMENT

4.0 GENERAL INFORMATION

At this point all of the steps in Section 3 should have been completed. Please read Section 5 before proceeding: it explains the adjustment and troubleshooting tools available with the computer. This section contains important recommendations and instructions for operating the elevator on Automatic operation.

4.1 RUNNING ON AUTOMATIC OPERATION

Move the car to the bottom landing on Inspection operation and turn the power OFF.
a. If the door operator is not working, pull the door fuses and close the doors so that the door clutch will not hit any of the door lock rollers. Take whatever steps are necessary to keep the installation safe, but make sure that the car top is still accessible after closing all of the doors.

- Remove the jumper between 2KBP1 and 2KBP2 on the SC-BAH board to reinvoke the A17.1 fault monitors. Turn ON the AC power to the elevator.
c. Temporarily take the car off of Inspection operation. If the LCD display does not show Test Mode, see what message is being displayed and correct the problem. For example, if the indicators show that the car is on Fire Service Phase 1, a jumper must be connected between terminal 2 on the back plate and terminal 38 on the SC-SB2K-H board in order to run the car on Normal operation. Remove the jumper once the Fire Service input is brought into the controller. Place the car on Inspection.

NOTE: If the car is not completely wired (temporary), check the following:

- wire removed from panel mount terminal DCL
- jumper between panel mount terminal DPM and 2 bus.
- wire removed from terminal 47 on the SC-SB2K-H board
- jumper from 2 bus to terminal 36 on the SC-SB2K-H board
- jumper from 2 bus to terminal 38 on the SC-SB2K-H board
- jumper from 2 bus to panel mount terminal EPI (if present)
d. If there are any Redundancy Faults preventing operation of the car, as signified by the LCD display, please replace the jumper just removed in step (b) above and set the option for ASME A17.1-2000 Redundancy Bypass to BYPASS = ON (See 5.6.5.1). This will provide A17.1 bypass mode for automatic operation with a time limit of two hours.

4.1.1 DIAGNOSTIC MESSAGES AND INPUT/OUTPUT SIGNALS

To speed up final adjustment and troubleshooting, become familiar with the Error Status Messages (Table 5.3) and Input/Output signals (Flags and Variables, Tables 5.4 and 5.5).

NOTE: Read Section 5.1: The MC-PCA-OA-2K Computer Panel - Your Tool for Programming, Diagnostics and Data Communication and Section 5.3, Diagnostic Mode.

ON-BOARD DIAGNOSTICS - When the Elevator Controller's Computer (MC-PCA-OA-2K) is in the DIAGNOSTIC MODE, with switches F1 - F8 in the down position, the LCD display provides a description of normal and abnormal conditions. When the LCD displays NORMAL, in the car status field, the system is ready for normal operation. A complete listing of the status and error messages, their meaning, probable cause and needed response are found in Table 5.2, Error Status Messages and Response Chart.

The computer displays abnormal conditions in the same priority that the computer evaluates them. For example, if the safety circuit is open and the system is also on Fire Service, the computer will first show that the safety circuit is open and will expect this problem to be corrected first. When the safety circuit problem has been corrected and the computer has recognized the safety input, the diagnostics will then show the Fire Service indication. After successfully bringing in the Fire Service input, the computer will then show NORMAL on the LCD display, provided that the system is not on some other function such as Independent Service or Cartop Inspection operation. The display will show NORMAL only if everything is normal. If the LCD display is showing any other message, an abnormal condition exists.

4.1.2 A FEW WORDS ABOUT ABSOLUTE FLOOR ENCODING

Absolute floor encoding is an option which allows the controller to read encoding vanes or magnets at each landing and thereby identify the floor. If the absolute floor encoding option is provided, the behavior of the car, when power is turned ON, is different than without absolute floor encoding.

JOBS WITHOUT ABSOLUTE FLOOR ENCODING - If the car is in the middle of the hoistway when power is turned ON, the controller will not know where the car is and must send the car to the bottom landing to get in step with the floor Position Indicator. It does so by generating an internal BFD (Bottom Floor Demand) flag in the computer. When the BFD flag is present, no car calls will be accepted until the car reaches the bottom terminal. The BFD flag will be cleared when the DSD (Down Slow Down) switch has opened (dropping power to terminal 13) and if DZ (Door Zone) and DLK (Door Locked) are both active. If the car is on Automatic Operation, and if a home floor has been designated, the car will move to the home landing at this time.

If the car is put on Relay Panel Inspection or Cartop Inspection operation and then is returned to Automatic operation, if the car is not at a terminal landing, the controller will create the BFD flag and will act as described above. If the BFD flag is present, and the TEST/NORMAL switch is on TEST, it will be necessary to place a jumper between terminals 2 and 45 (Door Close input) to move the car. It may be necessary to hold the jumper on the terminals for several seconds.

JOBS WITH ABSOLUTE FLOOR ENCODING - If the car is not at a landing when power is turned ON, the controller will generate a down direction command and the car will move toward the closest landing, provided that all abnormal conditions have been corrected. When the car reaches a landing and is within the Door Zone (relay DZ picked) with leveling completed (relays LU and LD not picked) the controller reads the floor code vanes or magnets and corrects the Position Indicator. If the car is on Automatic Operation, and if a home floor has been designated, the car will move to the home landing at this time. If the car is at a landing, within the Door Zone (relay DZ picked) with leveling completed (relays LU, LD not picked) when AC
power is turned ON, the controller will read the floor code vanes or magnets at the landing and correct the Position Indicator. Again, if a home floor has been designated the car will move to this landing to park.

4.1.3 REGISTERING CAR CALLS

In the process of making final adjustments to the controller, periodically you will be asked to register car calls. A call or series of calls can be registered at the controller by momentarily placing a jumper between terminal 1 (system common) and the desired car call terminal or terminals on the $\mathrm{HC}-\mathrm{PCI} / \mathrm{O}$ or $\mathrm{HC}-\mathrm{CI} / \mathrm{O}-\mathrm{E}$ board, and then between terminal 2 and terminal 45 to allow the car to travel to each call. The car may move immediately after the first call is placed, or it may wait several seconds before moving.

CAUTION: The call terminals on the $\mathrm{HC}-\mathrm{PCI} / \mathrm{O}$ and $\mathrm{HC}-\mathrm{Cl} / \mathrm{O}-\mathrm{E}$ board should never be connected to any of the power terminals (such as 2, 3, 4, etc.). If this happens and the call is turned on, it will blow the resistor-fuse or triac which plugs into the board. Later versions of these boards may have plug-in zener diodes. These parts are designed to be field replaceable and spares are provided in unused positions on the board, or are available from MCE. DO NOT JUMPER THESE PLUG-IN COMPONENTS AS IT MAY DESTROY THE BOARD OR OTHER CONTROLLER COMPONENTS. If any of these components should blow, FIND OUT WHY instead of constantly replacing them, as the constant faults can eventually damage the board.

4.1.4 TEST MODE OPERATION

The purpose of TEST mode is to allow easy and convenient operation of the car so that the final adjustments can be made without cycling the doors. When the elevator is operated in the TEST mode, the elevator doors do not open. The door open relays are disconnected automatically during TEST mode operation.

The car is put into TEST mode by placing the TEST/NORMAL switch on the SC-SB2K-H (Main Relay) board in the TEST position. Note that when the TEST/NORMAL switch is in the TEST position, it puts the car into Test Mode, provided that the Car Top Inspection and Relay Panel MACHINE ROOM INSPECTION TRANSFER switches are in the NORM or normal positions. In that case, the LCD should show "TEST MODE" and not "NORMAL." If the expected indication is not displayed, check to see what message is being displayed and correct the problem. Operation while in TEST mode should be easy to understand by knowing the following:
a. Every time the car stops, a non-interference timer mustelapse before the car can move again (the car will not move unless there is another car call). Note that after the timer has elapsed, the car will move immediately as soon as the next car call is placed (the car will not move if the system is a single button collective system and there is no jumper from terminal 2 to terminal 45). Placing a car call right after the car stops will require the non-interference timer to elapse before the car can move again.
b. Simply having one or more car calls registered will not necessarily cause the car to move. It will be necessary to jumper terminal 2 to terminal 45 to create a Door Close Button input to get the car to move. If the car is not a single button collective but is a
selective-collective, the jumper from terminal 2 to 45 will not be necessary. Leave a jumper connected from terminal 1 to the last car call in the line of calls that have been placed. This will create a constant pressure signal on the car call which is an alternate means of creating a Door Close Button signal to get a car that is on Independent Service to leave the landing. However, the jumper from terminal 2 to terminal 45 may be more convenient.
c. If a jumper from terminal 1 is touched to the car call input for the floor where the car is located, it will reestablish the non-interference timer and it must elapse before the car can move again.
d. If the elevator is trying to level, it will not pick high speed and leave the landing until it has completed the leveling process. Drive Unit speed adjustments and direction limits at terminal landings may cause this problem.
e. If any of the inputs that open the door are active (Safety Edge On, Photo Eye On, Car Call input grounded to 1 for the floor matching the Position Indicator, etc.) the car will not leave the landing.
f. Both slowdown switch inputs (terminals 11 and 13) should never be inactive at the same time when the doors are closed and locked and the safety circuit is closed.

4.1.5 SWITCHING TO AUTOMATIC OPERATION

a. Place the car on Inspection operation.
b. Move the car to the bottom terminal landing. Check to see if the DZ relay is picked. If not, move the car on Inspection to place it in the Door Zone.
c. Place the Relay Panel Inspection switch in the NORM position. If the car is not at a landing, it will move to a landing. If the car is at a landing but not in the door zone, either the LU or LD relays should pick and the car should perform a relevel. If the relevel is not successful, check the following:

- If the LD relay is picked, but the brake and other relays are not, the down direction limit switch may be preventing the leveling down operation.
- If the car is trying to level, it will not leave the landing for a call until the leveling is complete. Move the limit switch if necessary.

The Status Indicator lights should now display the indication for Independent Service operation. At this time the Position Indicator should match the actual car location. Note that all of the Position Indicators and direction arrows are conveniently displayed on the controller. All the calls are also displayed on the controller.

4.2 FINAL ADJUSTMENTS

4.2.1 DOOR OPERATOR ADJUSTMENTS

Install the fuses for the door operator(s) and complete the final adjustments. Doors can be opened at 3 " before the floor or at the floor (non-pre-opening option). Hydraulic elevators are usually set up to open the doors only after the car stops, but pre-opening is available. Contact MCE Customer Service.

4.2.2 HYDRAULIC VALVES

Adjust hydraulic valves for proper speed, acceleration, deceleration, etc. and check contract speed. A hardware timer on the SC-SB2K-H board automatically provides pump motor overrun for Soft Stop operation. Ensure that the Soft Stop jumper (JP1) is in the ON position for it to be on and in the OFF position for it to be off.

4.2.3 SLOWDOWN AND LIMIT SWITCHES

Disconnect the stepping switch inputs (terminals 72 and 71 on SC-SB2K-H for 3 or more landings) and verify proper operation of all slowdown and limit switches for slowing and stopping the car at both terminal landings.

4.2.4 HALL CALLS

Place hall calls for all of the landings and make sure all hall calls function properly.

4.2.5 OPTIONS

Verify the operation of the following options: Independent Service, Fire Return Phase 1 (Main Floor and Alternate Floor operation, if provided), Fire Phase II In-Car operation, and any other options provided.

4.2.6 DOOR OPEN/CLOSE PROTECTION

The elevator controller is provided with door open protection and door close protection. If the doors do not open after several seconds, the car will give up and continue to the next call. After the car starts to close the doors and the doors do not lock, it will recycle the doors open and attempt to close the doors three times before a DLK fail error.

4.2.7 MOTOR LIMIT TIMER

A motor limit timer is provided to take the car to the bottom landing and open the doors if the motor is operating for too long.

4.2.8 VALVE LIMIT TIMER

The same is true for the valves with the down valves being turned off and the doors reenabled if the car is at a floor.

4.2.9 STUCK BUTTON PROTECTION

Stuck button protection is also provided for both car calls and hall calls.

4.2.10 RELEVEL OPERATION

If the car relevels up after stopping at the floor, it will respond normally (instantly) the first time it relevels up. Any additional up leveling operations after the first one will be delayed by a computer-controlled timer (usually 3 seconds). This process will repeat itself every time the car runs to another floor (the first up relevel is always normal, not delayed). Down leveling is always normal and not involved with this timer.

WARNING: Before the Elevator can be turned over to normal use, it is very important to verify that no safety circuit is bypassed. The items to be checked, include, but are not limited to:

* Check that the hierarchy of the inspection inputs is correct. Car top inspection must take priority over in car, hoistway access and machine room inspection modes. In car must take precedence over hoistway access and machine room inspection. Hoistway access must take priority over machine room inspection.
* No jumper between 2KBP1 and 2KBP2 on SC-BAH
* No jumper between terminals 2 and 15 (SC-SB2K-H).
* No jumper between terminals 4 and 9 (SC-SB2K-H).
* No jumper between terminals 9 and 10 or 12 (SC-SB2K-H).
* No jumper between terminals 10 and 11 (SC-SB2K-H).
* No jumper between terminals 12 and 13 (SC-SB2K-H).
* No jumper between terminals 16 and 17 (SC-SB2K-H).
* Option Long Term Inspection Only Bypass and ASME A17.1-2000 Redundancy Bypass are OFF (see section 5.6.5) and the F3 switch is down on the MC-PCA-OA2K board.

SECTION 5 THE COMPUTER

5.0 ABOUT THE PHC SERIES

The computer on the PHC Series elevator controller has been designed for easy communication between the mechanic and the controller and between the controller and other computers or data terminals. The computer will be used (see Figure 5.1) for diagnostic troubleshooting and for programming the controller.

5.1 THE MC-PCA-OA-2K COMPUTER PANEL - YOUR TOOL FOR PROGRAMMING, DIAGNOSTICS AND DATA COMMUNICATION

Figure 5.1 shows the indicators, switches and terminals on the computer panel.

5.1.1 INDICATORS

5.1.1.1 COMPUTER ON LIGHT - When steadily illuminated, this light shows that the computer is functioning normally and completing its program loop successfully. Pressing the COMPUTER RESET button will cause the COMPUTER ON light to turn OFF and the light will stay OFF while the RESET button is depressed. The computer is equipped with a watchdog feature that will shut down the controller if the program loop cannot be completed (software system failure). If the COMPUTER ON light is flashing continuously, it means that the computer board is malfunctioning. Inspect the controller chip (see Figure 5.1) and EPROM chip to see if it is properly seated and to see if the pins are properly inserted into the socket.
5.1.1.2 VERTICAL STATUS INDICATOR LIGHTS - These lights show the status of the elevator. Table 5.1 shows a list of these lights and their meanings.

TABLE 5.1 Status Indicators

LIGHT NAME	MEANING
SAFETY ON	Safety circuit is made.
DOORS LOCKED	Door lock contacts are made.
HIGH SPEED	Elevator is running at high speed.
IND SERVICE	Elevator is on Independent Service.
INSP/ACCESS	Elevator is on Car Top Inspection or Hoistway Access operation.
FIRE SERVICE	Elevator is on Fire Service operation.
TIMED OUT OF SERVICE	Elevator Is Timed Out of Service.
MOTOR/VALVE LIMIT TIMER	Motor/Valve Limit Timer has elapsed.

5.1.1.3 DIAGNOSTICS LCD DISPLAY - The 32-character LCD (Liquid Crystal Display) displays various information depending on the positions of the F1-F8 switches. Diagnostic mode is accessed when all of the switches are in the down position. The LCD display shows an elevator status message, the car position, the contents of the computer's internal memory and communication status.

5.1.2 SWITCHES, BUTTONS \& ADJUSTMENTS

5.1.2.1 COMPUTER RESET PUSHBUTTON - Pressing the RESET button will cause the computer to reset. If the elevator is running, the controller will drop the safety relay and bring the elevator to an immediate stop. The elevator will then go to the terminal landing (or to the next landing if the controller has the absolute floor encoding feature) to correct its position before it can respond to any calls. Existing calls and P.I. information will be lost each time the computer is reset.
5.1.2.2 N, S, +, \& - PUSHBUTTONS - The pushbuttons allow the mechanic to view and change data in the computer memory. These pushbuttons have different functions depending on the current mode (Diagnostic mode [see Section 5.3], Program
 mode [see Section 5.4], External Memory mode [see Section 5.5], or System mode [see Section 5.6]).
5.1.2.3 MODE SELECTION F1-F8 FUNCTION SWITCHES - The computer panel operates in different modes. Diagnostic mode is useful for diagnosing and troubleshooting the elevator system. It is initiated by placing all of the F1-F8 switches in the down position. Program mode is used to set up the controller to meet the elevator specifications. Program mode is initiated by moving the F1 switch to the up position (with all other F switches in the down position). External Memory mode is initiated by placing the F2 switch in the up position (with all other F switches in the down position) and is useful for diagnosing the elevator system by viewing the computer's external memory. System mode is initiated by placing the F3 switch in the up position (with all other F switches in the down position). Programming System mode functions does not require the car to be on inspection. When only the F8 switch is placed in the up position, the system status displays are available on the LCD display (see Section 5.1.4).
5.1.2.4 LCD CONTRAST ADJUSTMENT TRIMPOT - The contrast on the LCD can be adjusted to make it easier to read by turning this trimpot. See Figure 5.1.

5.1.3 TERMINALS

5.1.3.1 POWER SUPPLY TERMINAL - The two terminals marked (+) and (-) are for +5VDC and Ground, respectively, to the MC-PCA-OA-2K board. See Figure 5.1.
5.1.3.2 COMMUNICATION PORT FOR DUPLEXING - The DIN connector shown in Figure 5.1 is used for high-speed communication between two cars in a duplex configuration. The communication cable is a twisted pair shielded cable. Two wires are for signals and the third is for grounding the shield (see the Job Prints for hook-up details).
5.1.3.3 COM PORT 1 AND 2 - These terminals are used to connect to a peripheral device (refer to Section 5.4.9.7).

5.1.4 STATUS DISPLAYS

To access the Status Displays, place function switch F8 in the up position (F1 thru F7 must be down). Press the \boldsymbol{N} pushbutton to cycle through the available status displays.

The following system status displays are available for viewing on the LCD display:

- PTHC Software Version - Main processor software version number.
- Eligibility Map - Door access for each floor ($F=$ front, $R=$ rear, $B=$ both). Read left to right - floors 1 thru 16 in the top row, floors 17 thru 32 in the bottom row. See Sections 5.4.2.5 and 5.4.2.6 for programming instructions.
- Current Load - The current load in the car as a percentage of full load (analog load weigher required).

5.2 COMPUTER SECURITY

A computer security system is available for the PHC controllers. The system requires the user to enter a passcode before they can adjust the controller's parameters through the computer.

The controllers are shipped without the security system. However, the security system can be purchased through MCE's Technical Support Department. Complete installation instructions are provided with the modification package. The next few paragraphs explain how the security system works after it is installed.

NOTE: This message is not related to Computer Security. If this message is seen on the LCD screen, it means that the Passcode

PASSCODE REQUEST
PI 8 20:10001000 Request Option has been activated and that a passcode is required in order to run the elevator on any mode of operation other than Inspection. See Section 5.6.2, Passcode Request Menu for more information.

5.2.1 PASSWORD

There are two sections that are secured by an 8-digit, alpha-numeric code chosen by the customer, Program Mode and System Mode.

When either of these two sections is accessed, the LCD display will show:

ENTER PASSWORD:

00000000

The password is entered the same way and has the same code.
N Pushbutton Change the position of the cursor.

+ Pushbutton Increment the current position by one.
- Pushbutton Decrement the current position by one.

S Pushbutton Check for a match.
If an invalid code is entered, the operator will be prompted to re-enter the code. Once a valid code has been entered, access is granted to the programming options and the password will not have to be reentered until the Password Timer expires.

5.3 DIAGNOSTIC MODE

MCE's PHC Elevator Controller Computer with On-Board Diagnostics is self-sufficient; external devices are not required when using the computer. The computer is generally the most reliable component of the elevator control system and the On-Board Diagnostics was designed to aid in evaluating the status of the control system. Using the On-Board Diagnostics helps to pinpoint the cause of elevator malfunctions.

5.3.1 GETTING INTO DIAGNOSTIC MODE

Diagnostic mode is initiated by placing the F1-F8 switches in the down position. A description of the LCD display format and the function of the $N, S,+$, and - pushbuttons during Diagnostic mode follows.

5.3.2 FUNCTION OF N PUSHBUTTON

F8 F7 F6 F5 F4 F3 F2 F1

Diagnostic mode

NORMAL OPERATION

PI 8 20:10110011
of Npushbuton (see Figure 5.1) allows for he advancement of the computer memory address, which is displayed on the second line of the LCD. For example, for the following display, pressing the \boldsymbol{N} pushbutton once will cause the 2 of the address 20 to begin blinking. By continuing to press the Npushbutton, the 0 of address 20 will begin to blink. The cycle will continue while the \mathbf{N} pushbutton is being
pressed. Once the digit to be changed is blinking, the address can then be modified using the + and - pushbuttons (refer to Sections 5.3.4 and 5.3.5).

The data (8 digits) that corresponds to the memory address is displayed to the right of the address (see Section 5.3.6.4). This display will change as the memory address changes.

5.3.3 FUNCTION OF S PUSHBUTTON

The S pushbutton (see Figure 5.1) ends the ability to change the address by stopping the digit from blinking. If the S pushbutton is not pressed, the selected digit will stop blinking automatically after a period of about 20 seconds.

5.3.4 FUNCTION OF + PUSHBUTTON

The + pushbutton (see Figure 5.1) modifies the digit of the computer memory address selected by the \boldsymbol{N} pushbutton. If the + pushbutton is pressed, the selected digit is incremented by one. The data display will also change as the address changes. For example, if the 0 of the address 20 is blinking, pressing the + pushbutton once will change the address from 20 to 21. Pressing the + pushbutton several more times will change the address to $22,23,24$, etc., up to 2 F and then back to 20 again. If the 2 of address 20 is blinking, pressing the + pushbutton once will change the address from 20 to 30 . Pressing the + pushbutton several more times will change the address to $40,50,60$, etc., up to F0. Once the address has reached F0, pressing the + pushbutton will cause the address to begin back at 00 .

5.3.5 FUNCTION OF - PUSHBUTTON

The - pushbutton (see Figure 5.1) also modifies the digit of the computer memory address selected by the Npushbutton. If the - pushbutton is pressed, the selected digit is decremented by one. The data display will also change as the address changes. For example: If the 0 of address 20 is blinking, pressing the - pushbutton once will change the address from 20 to 2 F . Pressing the - pushbutton several more times will change the address to 2E, 2D, 2C, etc., back to 20 again. If the 2 in the address 20 is blinking, pressing the - pushbutton once will change the address from 20 to 10. Pressing the - pushbutton several more times will change the address to 00, F0, E0, etc., back to 00 . Once the address has reached 00 , pressing the pushbutton will cause the address to start over at F0.

5.3.6 FORMAT OF LCD DISPLAY

The multi-functional alphanumeric LCD display shows the car's status and can also be used for diagnostic purposes to display the contents of the computer's memory. The figure shows the various parts of the LCD in Diagnostic mode.

5.3.6.1 NORMAL DISPLAY - For simplex

 controllers, the letter D in the drawing will not appear on the LCD and instead that part of the display will always be blank. For a duplex controller, this part of the display provides information about the communication between the controllers and about the dispatching. One of the following codes should appear:

S Indicates that this computer is acting as the slave to the dispatching computer. Hall call assignments are received from the dispatching computer through the communication cable.

D Indicates that this computer is acting as the dispatcher. It is responsible for assigning hall calls to itself and to the other controller.

BLANK If this part of the display is blank, it denotes that communication has not been established between the two cars (see Section 6 for information on identifying and solving communication problems).
5.3.6.2 STATUS MESSAGE - This scrolling part of the LCD shows the prevailing status of the elevator. There is a status message for each special operation (e.g., Fire Service). There

$$
\frac{\text { NORMAL OPERATION }}{\text { PI } 820: 10110011}
$$ are also status messages for many different error conditions (e.g., open safety string). See Tables 5.2 and 5.3 for a complete list of these status messages and their meanings.

TABLE 5.2 Status and Error Messages

Scrolling Message	Special Event Message
2AB REDUNDANCY FAULT	Description: Monitors the 2AB relay for proper operation. If the 2AB relay is ON , the R2AB input will be OFF. R2AB should always be the opposite of 2AB otherwise, the 2AB Redundancy Fault is logged and the elevator shuts down. Troubleshooting: Check the 2AB relay for proper operation. Also check the prints to see where the input R2AB comes in and check 47 K resistor, swap ribbon cable and finally try replacing the associated board ($\mathrm{w} / \mathrm{relay}$) or HC-IOX.

Alarm - $\mathbf{4}$ times in 60 secs (not scrolled, Event Calendar only) \quad Alarm - $\mathbf{4}$ times in $\mathbf{6 0}$ secs
Description: The alarm has been activated four times in one minute and the car is not moving (see ABI, Alarm Bell Input option) .

Alarm - Car not in DZ (not scrolled, Event Calendar only)	Alarm - Car not in DZ

Description: The alarm has been activated while the car is stopped outside of the landing (door) zone (see ABI, Alarm Bell Input option).

ATTENDANT SERVICE OPERATION

Description: The car is on attendant operation. The attendant service input (ATS) is activated.
Troubleshooting: Go into Program Mode and check to see if any spare inputs are programmed as ATS. Then check to see if that particular input is activated.
BAB REDUNDANCY FAULT
Description: Monitors the $B A B$ relay for proper operation. If the $B A B$ relay is $O N$, the RBAB input will be OFF. RBAB should always be the opposite of $B A B$ otherwise, the BAB Redundancy Fault is logged and the elevator shuts down.
Troubleshooting: Check the BAB relay for proper operation. Also check the prints to see where the input RBAB comes in and check 47 K resistor, swap ribbon cable and finally try replacing the associated board (w/ relay) or HC-IOX.

BOTH USD AND DSD INPUTS ARE ACTIVE

Both USD and DSD are Open
Description: Usually indicates a problem with the up slow down or the down slow down switch.
Troubleshooting: Inspect both switches and associated wiring. The down slow down switch should be closed, unless the car is at the bottom; then it should be open. The up slow down switch should be closed, unless the car is at the top; then it should be open.

TABLE 5.2 Status and Error Messages

Scrolling Message	Special Event Message
BOTTOM FLOOR OR TOP FLOOR DEMAND	Bottom Floor Demand / Top Floor Demand

Description: The controller is trying to establish the position of the car by sending it to either the top or the bottom. Usually associated with bottom floor demand. Bottom Floor Demand has four possible causes:

1. A change from Inspection to Automatic operation.
2. Pressing the COMPUTER RESET button.
3. Initial Power-up.
4. If the car is at the top floor, and the controller gets an up slow down signal (USD), the controller will create a Bottom Floor Demand. Troubleshooting: Bottom Floor Demand should be cleared when all of the following conditions are met:
5. The car is at the bottom and the down slow down (DSD) input to the controller is OFF (because the switch should be open).
6. The Door Zone (DZ) input to the controller is $O N$.
7. The Door Lock (DLK) input to the controller is ON.

If the car is at the bottom, and the message still flashes, check the Down Slow Down switch \& associated wiring. Also, inspect the door zone landing system vane or magnet at the bottom floor and the door lock circuit.

Top Floor Demand should be cleared when all of the following conditions are met:

1. The car is at the top and the up slow down (USD) input to the controller is OFF (because the switch should be open).
2. The Door Zone (DZ) input to the controller is $O N$.
3. The Door Lock (DLK) input to the controller is $O N$.

If the car is at the top, and the message still flashes, inspect the Up Slow Down Switch \& associated wiring. Also, inspect the door zone landing system vane or magnet at the top floor and the door lock circuit.

NOTE: If the controller has the absolute floor encoding feature, then the Bottom and Top Floor Demands should be cleared when the car stops in any door zone. The car does not have to travel to the top or bottom.

BRAKE PICK FAILURE (Traction only)

Description: The car is shut down due to the BPS input being seen as activated during three consecutive runs indicating the brake is not fully picked. (BPS is high)
Troubleshooting: Go into Program Mode and check to see if any spare inputs are programmed as BPS. Then check to see if that particular input is activated.

CAPTURE FOR TEST

Description: CTST input has been activated.
Troubleshooting: Go into Program Mode. Check the spare inputs to see if any are programmed as CTST. Ensure that this input is NOT activated.

CAR CALL BUS IS DISCONNECTED \quad Bus Fuse Blown (2C)

Description: Usually indicates a problem in the wiring or fuses. There is no power to the Car Call circuits on the $\mathrm{HC}-\mathrm{Cl} / \mathrm{O}-\mathrm{E}$ and $\mathrm{HC}-$ PCI/O board(s).
Troubleshooting: Check the Car Call Bus fuse. Check the wires that go to the Car Call Power inputs on the $\mathrm{HC}-\mathrm{PCl} / \mathrm{O} \& \mathrm{HC}-\mathrm{Cl} / \mathrm{O}-\mathrm{E}$ board(s) in the controller.

CAR IN TEST MODE

Description: The spare input TEST has been activated.
Troubleshooting: Check the TEST/NORM switch on the Relay Board. Check voltage level at the TEST input.
Car Out of Svc. w/ DLK (not scrolled, Event Calendar only) Car Out of Svc. w/ DLK
Description: The car was delayed from leaving a landing for a significant period of time and the doors were locked.
Troubleshooting: Check the door locks, PHE and DOB circuits.
Car Out of Svc. w/o DLK (not scrolled, Event Calendar only) Car Out of Svc. w/o DLK
Description: The car was delayed from leaving a landing for a significant period of time and the doors were not locked. Troubleshooting: Check for an obstruction that has kept the doors from closing. Also check the door locks, PHE and DOB circuits.

CAR SAFETY DEVICE OPEN
 Car Safety Device Open

Description: One of the car safety devices has activated, opening the safety circuit (e.g., emergency exit contact, safety clamp switch, car-top emergency stop switch).
Troubleshooting: Check all car safety devices. Refer to controller wiring prints for applicable devices.

CAR TO FLOOR FUNCTION

Description: The CTF input has been activated.
Troubleshooting: Go into Program Mode and see if any spare inputs are programmed as CTF. Then, check to see if that particular input is activated.

| Scrolling Message | Special Event Message |
| :--- | :--- | :--- |
| CAR TO LOBBY OPERATION | |
| | Description: The CTL input has been activated.
 Troubleshooting: Go into Program Mode and see if any spare inputs are programmed as CTL. Then, check to see if that particular
 input is activated. |

Communication Loss (not scrolled, Event Calendar only)		Communication Loss
	Description: The MC-PCA board is not communicating with the MC-PA board. Troubleshooting: Check the cable between the MC-PCA and MC-PA boards and the associated connectors.	
CONFIGURATION ERROR-CHANGE SETTINGS BEFORE INSTALLATION		
	Description: Incorrect Programmed value(s), e.g., a floor selected for the fire floor is not one at which the elevator stops. Troubleshooting: Go into Program Mode. Check all of the values associated with stops \& special floors. Save the values. If the message still appears, contact MCE.	

CONTACTOR PROOFING REDUNDANCY FAILURE

Description: The main power contactors that provide power to the controller have not dropped out in their intended manner.
Troubleshooting: Inspect the main power contactors to ensure that they are working as intended. Ensure that there is power on the CNP input when the car is not in motion.

DIRECTION RELAY REDUNDANCY FAILURE (Non ASME-2000)

Description: A failure in the up and down direction relays has been detected.
Troubleshooting: Check to see if the UDF input is active without the computer's generation of the UPDO or DNDO outputs. (This is not required.)

DOOR CLOSE PROTECTION TIMER ELAPSED \quad Door Close Protection

Description: A failure to lock the doors is detected. This failure condition exists when the doors have closed (DCLC = 1 or DCL = $0 / D P M=1$) a demand exists for the car to move ($D C P=1$), but the doors are not locked ($D L K=0$) within 60 seconds.
Troubleshooting: If the Retiring Cam option is set, verify the Retiring Cam relay is activated ($D C P=1, D C L=0 / D P M=1$ or $D C L C=1$) and the doors lock ($\mathrm{DLK}=1$). If no Retiring Cam is used, verify the door lock circuitry contacts are closed to provide power to the door lock input ($\mathrm{DLK}=1$). When a predetermined number of sequential failures is detected, default set to four, the car will shutdown. The failure will be reset once the doors are locked ($\mathrm{DLK}=1$), if the car is placed on Inspection, or the Computer Reset Button is pressed.

DOOR ZONE SENSOR FAILURE - OFF POSITION

Description: Indicates that the car completed a run, but did not see door zone.
Troubleshooting: Reset this fault by pressing the Fault Reset button or by toggling MACHINE ROOM INSPECTION INSP/NORM switch. Run the car to the same floor and verify that $\mathrm{DZ}=1$ or $\mathrm{DZR}=1$. Check placement of DZ magnets.

DOOR ZONE SENSOR FAILURE - ON POSITION

Stuck Door Zone Input

Description: The controller computer detected that one of the DZ inputs (front or rear) did not transition to the low state during the last elevator run. Probable cause may be:

1. A faulty door zone sensor or associated circuitry (within the landing system assembly);
2. Faulty wiring from the landing system to the controller;
3. Faulty computer input circuit (main relay board or $\mathrm{HC}-\mathrm{PCI} / \mathrm{O}$ board).

Troubleshooting: Check operation of the door zone sensors and associated wiring (place car on inspection, move car away from the floor, noting the transitions in the door zone signal(s) coming from the landing system).

- Verity that the computer diagnostic display of DZ (or DZ rear) matches the state of the sensor signals at the main relay board (or rear door relay board).

DRIVE FAILED TO RESPOND (Non ASME-2000 Traction only)	Drive Failed to Respond

Description: Monitors the Drive On status of the drive. The DRON input must be ON when the elevator is stopped and OFF when the elevator is in motion. If this condition is not true, the Drive Failed To Respond fault will be logged. The elevator will attempt to recover from this fault up to four consecutive times after which this fault will latch and require a manual reset by toggling the Inspection switch. Troubleshooting: Check the circuitry associated with the DRON input for proper operation.

DRIVE FAULT

Description: The drive fault input (DFI) has been activated, indicating that a drive fault has occurred.
Troubleshooting: Check the contact wired to the DFI input (this contact should originate from the drive system). Refer to the installation/user manual associated with the specific drive for troubleshooting suggestions.

EARTHQUAKE OPERATION (Traction only) \quad Earthquake

Description: The car is shutdown on Earthquake Operation (EQI is high; used for ASME and California Earthquake Operation.) Troubleshooting: Go into Program Mode and check to see if any spare inputs are programmed as EQI. Then, check to see if that particular input is activated. The elevator may be returned to normal service by means of the momentary reset button on the HC-EQ2 board, provided that the CWI input is not active.

TABLE 5.2 Status and Error Messages

Scrolling Message	Special Event Message
EARTHQUAKE - REDUCED SPEED OPERATION (Traction only)	

Description: The car is allowed to run at reduced speed on Earthquake Normal Operation. (EQI is high, CWI is low; used for ASME earthquake operation only.)
Troubleshooting: Go to Program Mode and check to see if any spare inputs are programmed as EQI. Then, check to see if that particular input is activated. The elevator may be returned to normal service by means of the momentary reset button on the HC-EQ2 board.

ELEVATOR SHUTDOWN SWITCH ACTIVE

Description: The ESS input has been activated.
Troubleshooting: Go into Program Mode and see if any of the inputs are programmed as ESS. Then, check to see if that particular input is activated.

EMERGENCY MEDICAL SERVICE

Description: Either the EMSH or the EMSC input has been activated.
Troubleshooting: Ensure that the MASSACHUSETTS EMS SERVICE option is set correctly. If not required, set this option to NO and ensure that the EMSH and EMSC inputs are not programmed as spare inputs. If it is required, set this option to the floor that the car should return to when the EMSH input is activated.

EMERGENCY POWER OPERATION Emergency Power

Description: The car is on Emergency Power operation (EPI is low).
Troubleshooting: Ensure that the Emergency Power operation option is set correctly. If emergency power is not required, set this option to NO and ensure that the EPI input is not programmed. If it is required, set this option to the floor that the car should return to on Emergency Power and program the EPI input.

ENTER SECURITY CODE

Description: MCE Security has been initiated.
Troubleshooting: Enter floor passcode in the C.O.P. within 10 seconds. See Section 5.6 .1 for instructions on how to program or change security passcodes.

EXMLT INPUT IS ACTIVATED (Hydro only)

Description: MLT shutdown with External Motor Limit Timer (EXMLT)
Troubleshooting: Check the External Motor Limit Timer and the associated circuitry. Check the voltage at the EXMLT input. Verify that the wiring is correct. Check the MLT / VLT Data Trap to verify that EXMLT is active.

FIRE SERVICE PHASE 1 - ALTERNATE	Fire Service Alternate

Description: The car is returning to an alternate fire return landing. The FRS input is low, the FRA input is high or FRAON is active. Troubleshooting: Inspect the fire sensors (especially the main floor sensor) and the Fire Phase I switch wiring. For some fire codes including ASME, the Fire Phase I switch must be turned to the BYPASS position and then back to OFF to clear the fire service status once activated.

FIRE SERVICE PHASE 1 - MAIN Fire Service Main

Description: The car is returning to the main fire return landing. The FRS input is low or the FRON or FRON2 inputs are high. Troubleshooting: Inspect the fire sensors and the Fire Phase I switch wiring. For some fire codes including ASME, the Fire Phase I switch must be turned to the BYPASS position and then back to OFF to clear the fire service status once activated.

FIRE SERVICE PHASE 2

Fire Service Phase 2
Description: The FCS controller input is $O N$.
Troubleshooting: Inspect the phase 2 switch and wiring. In some cases, to exit Fire Service Phase 2, the car must be at the fire floor at which Fire Phase 2 was activated, the doors must be fully open, and the phase 2 switch must be off (the FCOFF input must be activated) to get out of phase 2.

FRONT DOL AND DLK ARE BOTH ACTIVE

Description: A critical failure has caused both the Door Open Limit and Door Lock inputs to both be active at the same time.(DOL=0 \& DLK=1). A problem with DOL and/or DLK circuitry or wiring.
Troubleshooting: Inspect the Door Open Limit and the Door Lock circuitry and wiring. When this error is generated, the car will shutdown with the doors open and will not answer any calls. The only way to reset this error condition is to put the car on Inspection operation.

FRONT DOOR IS LOCKED BUT NOT FULLY CLOSED

Description: Doors Open ($D C L=1$) and Locked ($D L K=1$). A problem with DCL and/or DLK circuitry or wiring.
Troubleshooting: Inspect the Door Closed Limit and the Door Lock circuitry and wiring. When this error is generated, the car is not allowed to run.

Scrolling Message	Special Event Message
FRONT DOOR LOCK SWITCH FAILURE (NYCHA)	
Description: The front door lock contacts have failed closed. Troubleshooting: Ensure that with the front hoistway doors closed and locked, there is power on the DLS input and no power present on the DCL input.	
FRONT DOOR OPEN LIMIT FAILURE	
Description: The door open limit switch has failed open. Troubleshooting: Ensure that the car gate is open, there is no power on the DOL input and no power is present on the DLS or CD inputs.	
FRONT GATE SWITCH FAILURE(NYCHA)	
Description: The front car gate switch has failed closed. Troubleshooting: Ensure that with the front car gate closed, there is power on the GS input and no power present on the DCL input.	
GOVERNOR SWITCH OPEN (Traction only)	Governor Switch Open
Description: The overspeed governor has activated, opening the safety circuit. Troubleshooting: Check the overspeed governor.	
HALL AND CAR CALL BUSES DISCONNECTED	
Description: A problem in the wiring or fuses. There is no power to the call circuits on the $\mathrm{HC}-\mathrm{Cl} / \mathrm{O}-\mathrm{E}$ and $\mathrm{HC}-\mathrm{PCl} / \mathrm{O}$ board(s). Troubleshooting: Check the Call Bus fuses. Check the wires that go to the Call Power inputs on the HC-PCI/O \& HC-CI/O-E board(s) in the controller.	
Description: A problem in the wiring or fuses. There is no power to the Hall Call circuits on the HC-CI/O-E and HC-PCI/O board(s). Troubleshooting: Check the Hall Call Bus fuse. Check the wires that go to the Hall Call Power inputs on the HC-PCI/O \& HC-CI/O-E board(s) in the controller.	

HEAVY LOAD WEIGHER CONDITION

Description: The HLI input has been activated.
Troubleshooting: Go into Program Mode and see if any spare inputs are programmed as an HLI input. Then, check to see if that particular input is activated.

HOISTWAY SAFETY DEVICE OPEN

Description: One of the hoistway safety devices has activated, opening the safety circuit (e.g., pit stop switch, car and cwt buffers switches, up/down final limit switches).
Troubleshooting: Check all hoistway safety devices. Refer to controller wiring prints for applicable devices.

HOSPITAL PHASE 1 OPERATION	Hospital Service

Description: A hospital emergency momentary call switch is activated at any floor.
Troubleshooting: Ensure that the hospital emergency operation option is set correctly. If hospital emergency operation is not required, set this option to no. If it is required, set the floors eligible to answer a hospital call to yes.

HOSPITAL PHASE 2 OPERATION

Description: The car has answered a hospital emergency call or the in car hospital emergency key switch has been activated (HOSP is high).
Troubleshooting: Ensure that the hospital emergency operation option is set correctly. Then check to see if any spare inputs are programmed as HOSP and if it is activated.

IN CAR STOP SWITCH ACTIVATED		Stop SW/Safety Relay Ckt
	Description: The in-car stop switch has been pulled, opening the safety circuit. Troubleshooting: Check the status of the in-car emergency stop switch.	
INAX REDUNDANCY FAULT		
	Description: Monitors the INAX relay for proper operation. If the INAX relay is ON, the RINAX input will be OFF. RINAX should always be the opposite of INAX otherwise, the INAX Redundancy Fault is logged and the elevator shuts down. Troubleshooting: Check the INAX relay for proper operation. Also check the prints to see where the input RINAX comes in and check 47 K resistor, swap ribbon cable and finally try replacing the associated board (w/ relay) or HC-lOX.	
INDEPENDENT SERVICE OPERATION		

TABLE 5.2 Status and Error Messages

Scrolling Message	Special Event Message
INSPECTION OPERATION	
	Description: The inspection computer input (IN) is deactivated. Troubleshooting: Check all of the inspection switches and associated wiring.
LANDING SYSTEM REDUNDANCY FAILURE (Non ASME-2000)	
	Description: Either DZ, LU or LD has failed closed. Troubleshooting: Ensure that on any run between floors, the LSR input goes low at least once. If the DZ sensor has failed closed, power will be present continuously on the LSR input. If eether the LU or LD sensor has failed closed, power will be present constantly on their respective inputs and this can also cause this error. This condition can be cleared by pressing the Redundancy Reset button.

LEVELING DOWN

Description: The Level Down computer input is $O N$. Comes ON normally when the car is just above a floor. If the car is level with the floor and a message appears, it is usually the result of a switch or sensor problem.
Troubleshooting: Inspect the LD switch or sensor on the landing system and the placement of the landing system vane or magnet for that floor.

LEVELING SENSOR FAILED - OFF POSITION

Leveling Input is absent

Description: One of the leveling sensor inputs (LU or LD) appears to have failed (in the inactive state). The controller computer did not detect the appropriate leveling signal (LU or LD) during the last approach to the floor. Probable causes may be:

1. A faulty leveling sensor or associated circuitry (within the landing system assembly);
2. Faulty wiring from the landing system to the controller;
3. Faulty computer input circuit (main relay board or HC-PCI/O board).

Troubleshooting: Check operation of the leveling sensors and associated wiring (place car on inspection, move above and below a landing, noting the transitions in the leveling signal(s) coming from the landing system).

- Verify that the computer diagnostic display of LU and LD matches the state of the sensor signals at the main relay board.

\section*{| LEVELING SENSOR FAILED - ON POSITION | Stuck Leveling Input |
| :--- | :--- |}

Description: One of the leveling sensor inputs (LU or LD) appears to have failed (in the active state). The controller computer detected that both the LU and LD inputs are active simultaneously. Probable causes may be:

1. A faulty leveling sensor or associated circuitry (within the landing system assembly);
2. Faulty wiring from the landing system to the controller;
3. Faulty computer input circuit (main relay board or $\mathrm{HC}-\mathrm{PCI} / \mathrm{O}$ board).

Troubleshooting: Check operation of the leveling sensors and associated wiring (place car on inspection, move above and below a landing, noting the transitions in the leveling signal(s) coming from the landing system).

- Verify that the computer diagnostic display of LU and LD matches the state of the sensor signals at the main relay board.
- Check also the operation of any contacts that may be placed at the "low side" (the "1-bus" side) of the LU and LD relay coils (e.g., H, INT). Check that such contacts close properly when appropriate.

LEVELING SENSOR FAILURE

Description: One or both of the LU and LD sensors have failed closed.
Troubleshooting: Ensure that power is not present on both the LU and LD inputs.

LEVELING UP

Description: The Level Up computer input is ON. Comes ON normally when the car is just below a floor. If the car is level with the floor and a message appears, it is usually the result of a switch or sensor problem.
Troubleshooting: Inspect the LU switch or sensor on the landing system and the placement of the landing system vane or magnet for that floor.

LIGHT LOAD WEIGHER CONDITION

Description: The Light Load Weighing input is activated.
Troubleshooting: Ensure that Light Load Weighing is required. If not, set the Light Load Weighing option to NO and ensure that the LLI input is not programmed. If Light Load Weighing is required, ensure that the Light Load Car Call Limit is set to the correct number of stops.

Lost DLK During Run (not scrolled, Event Calendar only) \quad Lost DLK During Run
Description: The Door Lock input was deactivated while the car was traveling through the hoistway.
Troubleshooting: Check the clearance between the door unlocking rollers and clutch.

LOW OIL SWITCH INPUT IS ACTIVATED (Hydro only)

Description: MLT shutdown with LOS. The car was unable to move at the expected speed due to insufficient oil.
Troubleshooting: Check the MLT/VLT Data Trap (Addr 495H bit 8). Ensure that there is sufficient oil in the reservoir. Check the Low
Oil switch and LOS input.

Scrolling Message	Special Event Message
LSA Movement Failure (not scrolled, Event Calendar only)	LSA Movement Failure
Description: The car has failed to complete an LSA movement check after being idle for 10 minutes at a landing (see ABI, Alarm Bell Input option).	

MOTOR LIMIT TIMER (ANTI-STALL) ELAPSED \quad Motor Limit Timer

Description: The Starter Overload or the Thermal Overload has tripped, or there is a mechanical problem that prevents or slows the motion of the car.
Troubleshooting: To clear the condition, the car must be put on Inspection, then back into Normal operation, or the RESET button must be pressed. Immediately check the starter and thermal overloads and all circuitry associated with the motor.

NORMAL OPERATION

Description: The elevator and controller are operating normally.
Troubleshooting: None
OVERLOAD CONDITION
Description: The car appears to be overloaded, as indicated by the load weigher input OVL.
Troubleshooting: Check the OVL input. If power is present on the OVL input, the load weigher contact associated with this input is closed. This contact being closed indicates to the elevator computer that the car is overloaded.

PASSCODE REQUEST

Description: The Passcode Request Option has been activated from the System Mode Menu.
Troubleshooting: The system can be run on Inspection operation only. The passcode must be entered correctly in the System Mode Menu in order to deactivate this option and allow the controller to run normally (see Section 5.6.2).
Photo Eye Failure (not scrolled, Event Calendar only)

Photo Eye Failure

Description: The Photo Eye input has been continuously active for a considerable period of time.
Troubleshooting: Check for abnormal blockage of the optical device, frayed or defective photo eye relating cable or failure of the photo eye input circuit.

POWER TRANSFER INPUT ACTIVE

Description: The PTI input has been activated.
Troubleshooting: Go into Program Mode and see if any of the inputs are programmed as PTI. Then, check to see if that particular input is activated.

POWER UP SHUT DOWN DUE TO EARTHQUAKE (Traction only)

Description: The CWI and/or EQI input was detected high at power up. (Used for ASME Earthquake Operation only.)
Troubleshooting: Go into Program Mode and check to see if any spare inputs are programmed as EQI or CWI. Then check to see if those particular inputs are activated. The elevator may be returned to normal service by means of the momentary reset button on the HC-EQ2 board. If both the EQI and CWI input were activated at power up, the MC-PCA board would need to be reset as well.

PRESSURE SWITCH ACTIVATED

Description: This message is displayed when the Pressure Switch Input (PSS) is programmed and activated (low).
Troubleshooting: Check the associated hardware device and take appropriate action.

REAR DOL \& DLK ARE BOTH ACTIVE

Description: The Door Open Limit Rear and the Door Lock inputs are both active, DOLR=0 and DLK=1. A problem with DOLR and/or DLK circuitry or wiring.
Troubleshooting: Inspect the Door Open Limit Rear and the Door Lock circuitry and wiring. When this error is generated, the car will shutdown with the doors open and will not answer any calls. To reset this error condition, putt the car on Inspection operation.

REAR DOOR IS LOCKED BUT NOT FULLY CLOSED

Description: Rear Doors Open ($\operatorname{DCLR}=1$) and Locked ($D L K=1$). Indicates a problem with DCLR and/or DLK circuitry or wiring. Troubleshooting: Inspect the Door Closed Limit Rear and the Door Lock circuitry and wiring. When this error is generated, the car is not allowed to run.

REAR DOOR LOCK SWITCH FAILURE (NYCHA)

Description: The rear door lock contacts have failed closed.
Troubleshooting: Ensure that with the rear hoistway doors closed and locked, there is power on the DLSR input an no power present on the DCLR input.

REAR DOOR OPEN LIMIT FAILURE

Description: The rear door open limit switch has failed open.
Troubleshooting: Ensure that the rear car gate is open, there is no power on the DOLR input and no power is present on the DLSR or CDR inputs.

TABLE 5.2 Status and Error Messages

Scrolling Message	Special Event Message
REAR GATE SWITCH FAILURE (NYCHA)	
Description: The rear car gate switch has failed closed. Troubleshooting: Ensure that with the rear car gate closed, there is power on the GSR input an no power present on the DCLR input.	

REDUNDANCY DOOR LOCK RELAY FAILURE

Description: The one or both of the front or rear door lock relays has failed closed.
Troubleshooting: Ensure that with the hoistway doors open, there is no power present on the RDLS or RDLSR inputs. If power is present, one or more of the door lock relays has failed in the closed or picked position.

REDUNDANCY FRONT GATE SWITCH FAILURE (Non ASME-2000)
Description: The car gate switch relay has failed closed.
Troubleshooting: Ensure that with the car gate open, there is no power present on the RGS input. If power is present, the car gate switch relay has failed closed.

REDUNDANCY REAR GATE SWITCH FAILURE

Description: The rear car gate switch relay has failed closed.
Troubleshooting: Ensure that with the rear car gate open, there is no power on the RGSR input. If power is present, the rear car gate
switch relay has failed closed.

SABBATH OPERATION ACTIVE

Description: The spare input SAB has been activated.
Troubleshooting: Check spare input bit address for SAB. Verify that the spare input address matches the SAB flag. Check voltage level at the SAB input.
SAFETY CIRCUIT IS OPEN Safety Relay Circuit Open

Description: The Car Operating Panel emergency stop switch has been pulled, or another contact switch in the safety circuit is in the open position.
Troubleshooting: Check the C.O.P. stop switch. Check the other switches and contacts in the safety string. Check safety string wiring against the MCE wiring diagrams.

Safety String Open (not scrolled, Event Calendar only)	Safety String Open

Description: The safety circuit is open.
Troubleshooting: Check the on-car and off-car safety devices, e.g. governor overload, over-travel limit switches, car stop switches and the SAF input.

SHUTDOWN OPERATION (MG Traction only)

Description: The car is on MG Shutdown Operation (MGS is high).
Troubleshooting: Ensure that the MG Shutdown Operation Option is set correctly. If MG Shutdown is not required, set this option to NO and ensure that the MGS Input is not programmed. If it is required, set this option to the floor that the car should return to on MG Shutdown and program the MGS Input.

SYNCHRONIZATION OPERATION (Hydro only)

Description: The SYNCI input has been activated
Troubleshooting: Ensure that the synchronization function is required. This function is used on PHC controllers used on jobs with two jacks or telescopic jacks.

- If the SYNCI Input option is programmed and has been activated, the SYNC function will be performed as soon as all demand is serviced. Ensure that the circuit connected to SYNCI input is not activating the input inappropriately.

\section*{| System Out of Service (not scrolled, Event Calendar only) | System Out of Service |
| :--- | :--- |}

Description: The supervisor has lost communication with the cars or the hall call common bus $(2 \mathrm{H})$ has failed.

\section*{| TIME OUT OF SERVICE | Time Out of Service |
| :--- | :--- |}

Description: The T.O.S. timer has expired.
Troubleshooting: See Section 5.4.5.6.
VALVE LIMIT TIMER (ANTI-STALL) ELAPSED (Hydro only) \quad Valve Limit Timer
Description: Indicates a problem with the valve or valve solenoids.
Troubleshooting: Inspect the valves \& valve solenoids and associated wiring.

VISCOSITY CONTROL FUNCTION (Hydro only)

Description: The Viscosity Control Input (VCI) is ON. The computer is periodically running the motor to warm the oil in the system.
Troubleshooting: Check the device that is wired to the input (usually an oil temperature sensor).

The following notes refer to Table 5.3 ASME A17.1-2000 Status and Error Messages.

NOTE: The term "operating cycle" is used to define a complete run. After a call is placed, the time between the picking of direction to dropping direction at the target floor, is defined as an operating cycle. This could be either a one-floor or multi-floor run.

NOTE: Remember that 90% of the redundancy faults are the result of a relay failing to release. A normally closed (NC) contact of each critical relay is monitored, and after a run has been completed, is expected to drop out (release). The normally closed monitoring contact must make up. This means that the redundancy inputs should be ON (1) when the car has stopped at a landing. Relays that are normally picked (GOV), are "cycletested," forcing them to drop after every operating cycle.

For troubleshooting the redundancy faults, the first few letters of the fault name are the same as the input terminal or dropping resistor designation. For example, if the RCD redundancy fault is displayed, measure the voltage at resistor RCD on the SC-SB2K-H board and expect at least 100 VAC on the input side and close to 5.0 volts on the output side of the resistor.

If the voltage at the associated terminal or resistor is as expected, try swapping the ribbon cable connectors. If the fault doesn't clear, swap out associated output TRIACs (for output circuits) and finally replace the offending board. Because the code required force-guided relays are soldered to the boards and cannot be replaced individually, the board must be replaced when the relay fails. Sockets for these code-required relays are as yet, unavailable.

The redundant "force-guided" relays are loaded on the two primary boards called the SC-SB2K-H and the SC-BAH. A third board, the SC-HDIO processes the input and output signals that go to and from the two primary boards and is located behind boards in the upper left of the control enclosure.

TABLE 5.3 ASME A17.1-2000 Status and Error Messages

Scrolling Message	Special Event Message
2BI REDUNDANCY FAULT	2BI Redundancy Fault

Description: If the F4 fuse blows, inputs GOV and RSAFR should be 0 . If either of these two inputs fail to go low, this fault is generated. ASME 2000 event.

Troubleshooting Tips:

- Check fuse F4 if OK swap ribbon cable at C3 on SC-SB2K(-H). If problem persists, replace SC-SB2K(-H) and then SC-HDIO.
- Also check input resistor 2BI at top left of the SC-SB2K(-H) board. Swap ribbon cables between SC-SB2K(-H) and SC-HDIO. If swapping ribbons has no effect or if 2BI resistor is defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

4 BUS CYCLE TEST FAULT \quad End of Run Cycle Test FIt

Description: A failure of the End of Run Cycle Test has been detected. At the end of an operating cycle, outputs MPSAF and CSAF are cycled OFF. This removes power from the four bus. ASME 2000 event.
Troubleshooting: The following inputs must respond as listed or the 4 bus cycle test fault will be logged and further operation of the lift will be prohibited.
Note that $0=$ OFF and $1=\mathrm{ON}$
$\mathrm{SAF}=0 \quad \mathrm{RMR}=0 \quad \mathrm{RBRK}=0 \quad$ REI $=0 \quad$ RIN $1=1$
RIN2 $=1 \quad$ UPS $=0 \quad$ USD $=0 \quad$ DNS $=0 \quad$ RPT $=1$
$\mathrm{DSD}=0 \quad \mathrm{RH}=1 \quad \mathrm{UNL}=0 \quad \mathrm{DNL}=0$

- Cycle testing is simply cycling a portion of the hardware to ensure that the input structure (solid state devices and software) are still operational. Cycle tests are performed at the end of an operating cycle when we turn OFF relays SAFR1, SAFR2 (the four bus is turned OFF) and output CT. Thus all of the devices associated with the four bus and Triac CT must go low (OFF). If any input fails to transition OFF, a cycle test fault is logged.
- Also check input resistors ASI1/PFLT, SAF, STOP, REB1, REB2 or RSAFR on the associated board (refer to prints). Swap ribbon cables between SC-SB2K(-H), SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

ACCI REDUNDANCY FAULT

Hoistway Access Input FIt
Description: This verifies that all inspection inputs downstream of ACCI (hoistway access inspection is third highest priority) are OFF (0) when this input is ON (1). ASME 2000 event.

Troubleshooting: If you have this fault logged use the controller prints to locate input resistors IN and INMR on the SC-SB2K(-H) board, voltage must be OFF when ACCI is ON otherwise the ACCI redundancy fault is logged and the system is shut down.

CAR TOP INSPECTION
 Car Top Inspection

Description: The Car Top Inspection switch has been activated. ASME 2000 event.

Troubleshooting:

- Confirm that $\operatorname{INCTI}=1$.
- Check input resistor INCTI on the associated board (refer to prints). Swap ribbon cables between SC-SB2K(-H), SC-HDIO. If swapping ribbons has no effect or if resistor are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

CD REDUNDANCY FAULT

Front Door Input Fault

Description: A failure of a front door lock input, relay or associated circuitry has been detected. The status of the car door lock input CD is constantly monitored. CD and DPM must be ON (1) when DLK is ON and the car is not in door zone. ASME 2000 event.
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. Expect CD to be ON when hoistway access has been activated (input $A C C I$ is $O N$) and either the top (TAB) or bottom (BAB) access switches are activated. If the Car Door Bypass switch is turned to the bypass position during car top or in car inspection, expect $C D=O N$ also. If the above conditions are not true, the CD redundancy fault is logged. Check the voltage on the terminals used by the offending fault to determine the problem. If terminal voltages are correct, first swap the ribbon cables connected between the SC-SB2K (-H) board and the SC-HDIO board, then swap out the board; first try SC-SB2K $(-\mathrm{H})$ followed by the SC-HDIO.

CDB REDUNDANCY FAULT \quad Front Door Input Fault

Description: A failure of a front door input, relay or associated circuitry has been detected. Both the OFF and BYPASS positions of the Car Door Bypass switch are monitored. The OFF position feeds input CDBO and the BYPASS position feeds input CDB. If the CDB switch is OFF the CDBO input will be ON (1) and the CDB input will be OFF (0). In effect CDB = not CDBO. ASME 2000 event. Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table.
NOTE: This redundancy fault detects the failure of an input by comparing two inputs against each other. In every case the inputs have opposite polarity (when one is ON the other must be OFF). Check the voltage on the terminals used by the offending fault to determine the problem. If terminal voltages are correct, try swapping the ribbon cables connecting the SC-BASE(-D) to the SC-HDIO board. Finally replace SC-HDIO or SC-BASE(-D).

TABLE 5.3 ASME A17.1-2000 Status and Error Messages

Scrolling Message	Special Event Message
CDBR REDUNDANCY FAULT	
Rear Door Input Fault	
	Description: A failure of a rear door lock input, relay or associated circuitry has been detected. Both the OFF and BYPASS positions
of the Car Door Bypass switch are monitored. The OFF position feeds input CDBOR and the BYPASS position feeds input CDBR.	
ASME 2000 event.	
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. If input CDBR switch is OFF then input	
CDBOR will be ON and the CDBR input will be OFF (0). If CDBOR does not reflect the opposite state of CDBR then the CDBR	
redundancy fault is logged and the car shut dow.	
NOTE: This redundancy fault detects the failure of an input by comparing two inputs against each other. In every case the inputs have	
opposite polarity (when one is ON the other must be OFF). Check the voltage on the terminals used by the offending fault to determine	
the problem. If terminal voltages are correct, try swapping the ribbon cables connecting the SC-BASE(-D) to the SC-HDIO board.	
Finally replace SC-HDIO or SC-BASE(-D).	

CDR REDUNDANCY FAULT	Rear Door Input Fault

Description: A failure of a rear door lock input, relay or associated circuitry has been detected. The status of the car door lock input CDR is constantly monitored. CDR should be ON (1) when rear DLK is ON and the car is not in the rear door zone. Expect CDR to be ON when hoistway access has been activated (input ACCI is ON) and either the top (TAB) or bottom (BAB) access switches are activated. If the Car Door Bypass switch is turned to the bypass position during car top or in car inspection, expect CDR = ON also. If these conditions are not true, the CDR redundancy fault is logged. ASME 2000 event.
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. Expect CD to be ON when hoistway access has been activated (input ACCI is ON) and either the top (TAB) or bottom (BAB) access switches are activated. If the Car Door Bypass switch is turned to the bypass position during car top or in car inspection, expect $\mathrm{CD}=\mathrm{ON}$ also. If the above conditions are not true, the CD redundancy fault is logged. Check the voltage on the terminals used by the offending fault to determine the problem. If terminal voltages are correct, first swap the ribbon cables connected between the SC-BASE(-D) board and the SC-HDIO board, then the SC-BASE(-D) followed by the SC-HDIO.

CONTACTOR FAILURE TO PICK (Hydro only) \quad Contactor Failure to Pick

Description: Indicates that one or more contactors have failed to energize when the car attempted to move in the UP direction. Troubleshooting: Reset this fault by pressing the Fault Reset button. Place the car on Inspection and move the car in the up direction. Watch the contactors to determine which one is failing to pick. Inputs RWYE, RDEL and RM are monitored and expected to go low when the contactors pick.

COS1 FAULT (Traction only)
 Overspeed Fault

Description: Contract overspeed 1 fault. The main processor monitors the COS1 signal coming from PLD1. ASME 2000 event. Troubleshooting: Run the car and observe if the car does indeed overspeed. If no overspeed condition is truly present we need to re-calibrate the overspeed function that is tripping (ILO, COS, ETS). For the SC-BASE(-D), follow directions in Section \#4 A17.1-2000 Code Compliant Functions and Testing of the adjustment manual. If neither of these attempts proves fruitful at eliminating the fault then first swap out the ribbon cable between the SC-BASE(-D) and SC-HDIO and finally replace the SC-BASE(-D). If the fault still occurs replace the SC-HDIO. On SC-BASE(-D) try turning COS trimpot fully clockwise.

COS2 FAULT (Traction only)

Overspeed Fault

Description: Contract overspeed 2 fault. The main processor inspects the COS2 signal coming from PLD2. ASME 2000 event. Troubleshooting: Run the car and observe if the car does indeed overspeed. If no overspeed condition is truly present we need to re-calibrate the overspeed function that is tripping (ILO, COS, ETS). For the SC-BASE(-D), follow directions in Section \#4 A17.1-2000 Code Compliant Functions and Testing of the adjustment manual. If neither of these attempts proves fruitful at eliminating the fault then first swap out the ribbon cable between the SC-BASE(-D) and SC-HDIO and finally replace the SC-BASE(-D). If the fault still occurs replace the SC-HDIO. On SC-BASE(-D) try turning COS trimpot fully clockwise.

CT CYCLE TEST FAULT

End of Run Cycle Test Fault

Description: A failure of the End of Run Cycle Test has been detected. This fault signifies that the functionality of the circuitry associated with the CT relay has failed to operate correctly. ASME 2000 event.
Troubleshooting: At the end of an operating cycle, output CT is cycled OFF. Relay CT should drop out, this functionality is monitored via inputs CD/HD and DLK. When output CT is OFF, inputs CD, HD and DLK will be OFF. If not, the CT cycle test fault will be logged and further operation of the lift will be suspended.

- Cycle testing is simply cycling a portion of the hardware to ensure that the input structure (solid state devices and software) are still operational. Cycle tests are performed at the end of an operating cycle when we turn OFF relays SAFR1, SAFR2 (the four bus is turned OFF) and output CT. Thus all of the devices associated with the four bus and Triac CT must go low (OFF). If any input fails to transition OFF, a cycle test fault is logged.
- Also check input resistors PFLT, SAF, or RSAFR on the associated board (refer to prints). Swap ribbon cables between SC-SB2K(-H), SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

TABLE 5.3 ASME A17.1-2000 Status and Error Messages

Scrolling Message	Special Event Message
CTDIF REDUNDANCY FAULT (Traction only)	CTDIF Redundancy Fault

Description: An internal check performed by the software system to ensure that the differential cycle-testing (CTDIF) flag is only turned ON at the end of an operating cycle. ASME 2000 event.
Troubleshooting:

- If CTDIF is turned ON any time other than at the end of an operating cycle, the system is shut down with the CTDIF redundancy fault.
- NOTE: This fault would indicate a failure of the software system or SC-BASE(-D) board. So first try swapping SC-BASE(-D) ribbon cables then replace SC-BASE(-D), SC-HDIO and finally the MC-MP2-2K or MC-PCA-OA-2K.

\section*{| CTOS REDUNDANCY FAULT (Traction only) | CTOS Redundancy Fault |
| :--- | :--- |}

Description: An internal check performed by the software system to ensure that the overspeed cycle-testing (CTOS) flag is only turned ON at the end of an operating cycle. ASME 2000 event.
Troubleshooting:

- If CTOS is turned on any time other than at the end of an operating cycle, the system is shut down with the CTOS redundancy fault.
- This fault would indicate a failure of the SC-BASE(-D) board. First swap out ribbon cables and then try swapping SC-BASE (-D) and then SC-HDIO.

CYCLE TEST

Description: Indicates the car is performing the end of run cycle test.
Troubleshooting: Verify the car is in door zone and does not relevel during the cycle test.

DCL REDUNDANCY FAULT

Front Door Input Fault
Description: A failure of a front doorlock input, relay or associated circuitry has been detected. This logic detects failure of the input structure and hardware associated with the DCL (door close limit) input. ASME 2000 event.
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. When DLK is ON (1) then input DCL must be OFF (0). When $\mathrm{DOL=}=0$, verify $\mathrm{DCL}=1$. If not, then a DCL redundancy fault is recorded and the car is prevented from operating. Check voltages on associated dropping resistors, swap ribbon cables and swap SC-SB2K(-H) or SC-HDIO.

DCLR REDUNDANCY FAULT

Rear Door Input Fault

Description: A failure of a rear door lock input, relay or associated circuitry has been detected. Detects the failure of the input structure and hardware associated with the DCLR (door close limit rear) input. ASME 2000 event.
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. When DLK is ON (1) then input DCLR must be OFF (0). When DOLR=0, verify $\operatorname{DCLR}=1$. If this is not the case then a DCLR redundancy fault is recorded and the car is prevented from operating. Check voltages on associated dropping resistors, swap ribbon cables and swap SC-SB2K(-H) or SC-HDIO.

DETS REDUNDANCY FAULT

Emer. Terminal Sw. Failure

Description: This fault is displayed when an inconsistency is detected between the Down Emergency Terminal Switches. ASME 2000 event.

Troubleshooting:

- Check the condition of the ETS switches. The DETS $1 / 2$ limit switches must operate simultaneously!!! .
- Check the wiring to the relay board (SC-SB2K) and IO board (SC-HDIO).
- Verify DETS1 equals DETS2 and the car is in door zone.
- Also check input resistors DETS1 and ASI3/DETS2 on the associated board (refer to prints). Swap ribbon cables between SC-BASE(-D) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-BASE(-D) board. Otherwise replace SC-HDIO board.

DFV REDUNDANCY FAULT (Hydro only) Down Fast Valve Fault

Description: Input DFV checks the status of the down terminal speed reducing switches. We simply compare input DFV against input DTSRL. IF DFV not equal to DTSRL we assert this fault. Hence these switches must open up simultaneously. ASME 2000 event. Troubleshooting: Check that the limit switches are opening within one second of each other as the car approaches the bottom terminal landing. If they are, then use diagnostics to determine the status of the inputs. Check voltage at top of associated input resistors on SC-SB2K-H. When the inputs are ON expect 5 VAC. When OFF expect 0 VAC. If this is not the case replace the SC-SB2K-H. If voltages are good, swap associated ribbon cable and finally swap the SC-HDIO

Direction Input Fault (not scrolled, Event Calendar only)	Direction Input Fault

Description: A failure of a direction related input, relay or associated circuitry has been detected. Check the scrolling message to see which fault is active: RDN, DNS, UPDIR, UPS, RUP, DNDIR REDUNDANCY FAULT or UP / DOWN NORMAL LIMIT SWITCH OPEN. ASME 2000 event.
Troubleshooting: Once the scrolling message is identified, look up that message in this table.

TABLE 5.3 ASME A17.1-2000 Status and Error Messages

Scrolling Message	Special Event Message
DLK REDUNDANCY FAULT	DLK Redundancy Fault
	Description: A failure of the DLK input or associated circuitry has been detected. ASME 2000 event.
Troubleshooting Tips:	
- DLK should be high when we are leveling and in door zone [DZ is high or DZR is high and either LU or LD is high].	
- DLK should also be high when all of the car and hoistway door lock inputs are made active [CD is high and HD is high and CDR is	
high and HDR is high]. If DLK is ON and any of these other relationshisp are not true, the DLK redundancy fault is set and disables	
further operation of the lift. Note that DLK is high when either or both of the car door or hoistway door lock bypass functions are	
active.	
- Also check input resistors DLK, DZR, CD, HD, CDR and HDR on the associated board (refer to prints). Swap ribbon cables between	
SC-SB2K(-H), SC-BASE(-D) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) or	
SC-BASER(-D) (for DZR) board. Otherwise replace SC-HDIO board.	

DNDIR REDUNDANCY FAULT

Direction Input Fault

Description: A failure of a direction related input, relay or associated circuitry has been detected. Valid when $S A F=1$. Input DNDIR is created by the SC-BASE(-D) board and represents resolved direction from the speed sensor. Input DNDIR must always be the opposite of RDN. ASME 2000 event.
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. Input DNDIR must always be the opposite of RDN. If the main processor detects that the resolved direction (DNDIR from BASE board) does not agree with the intended direction (RDN from MP2 / PCA), the system is shut down with the DNDIR redundancy fault. Check that the DN LED on the SC-BASE(-D) is ON when car motion is down and OFF when car motion is up. Swap Ribbons, check 95 and 96 signals (0 to 55VDC) swap SC-BASE(-D) or SC-HDIO.

DNS REDUNDANCY FAULT
 Direction Input Fault

Description: A failure of a direction related input, relay or associated circuitry has been detected. Valid when $\mathrm{SAF}=1$. Verifies that the down sense input DNS is valid. ASME 2000 event.
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. Once DLK is ON (1), if DNS is ON (1), then RDN must be OFF (0). Check associated input resistors, swap boards or ribbon cables to correct.

Door Zone Input Fault (not scrolled, Event Calendar only)

Door Zone Input Fault

Description: A failure of a door zone related input, relay or associated circuitry has been detected. Check the scrolling message to see which fault is active: DZX, DZRX, RDZ, RDZX, or RDZR REDUNDANCY FAULT. ASME 2000 event.
Troubleshooting: Once the scrolling message is identified, look up that message in this table. See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table.
DOWN NORMAL LIMIT SWITCH OPEN \quad Direction Input Fault
Description: A failure of a direction related input, relay or associated circuitry has been detected. A failure of a direction related input, relay or associated circuitry has been detected. If $S A F=1$ and $D L K=1$ and the car is below the Down Normal Limit Switch (DNL=0), then this status is displayed. ASME 2000 event.
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. Verify SAF=1 and DLK=1 and move the car above the Down Normal Limit (DNL=1). Car should never automatically travel on to this limit switch. Possibility that switch is not far enough into terminal.. Please move limit switch.

DP SENSOR / DIFFERENTIAL FAULT (Traction only)
Description: This fault indicates that one of the PLDs (on the SC-BASE/SC-BASER) has detected a count difference in the pulse signal generated from Speed Sensor and magnet mounted on the motor.
Troubleshooting: Verify that for up direction travel, LEDS UP1 and UP2 turn ON, and for down direction, that LEDs DN1 and DN2 turn ON. If not:

- Verify that the sensor is $1 / 16^{\prime \prime}$ away from the magnet on the motor shaft. Also verify that the magnet assembly is perpendicular to the sensor.
- Check the shielded cable that connects sensor assembly to SC-BASE/R board. Swap the cable.
- Replace the sensor, followed by the SC-BASE/R board. Otherwise replace SC-HDIO board..

DPM REDUNDANCY FAULT
Front Door Input Fault
Description: A failure of a front door input, relay or associated circuitry has been detected. This logic detects failure of the input structure and hardware associated with the DPM (door position monitor) input. ASME 2000 event.
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. Valid when SAF $=1$. When DLK is ON (1) then input DPM must also be ON (1). When DOL=0, DPM=0. Make sure that DPM makes (120 VAC) 1 to 2 " prior to door lock. If this is already the case then check associated input resistors, ribbon cable or boards and replace as deemed necessary.

DPMR REDUNDANCY FAULT

Rear Door Input Fault

Description: A failure of a rear door input, relay or associated circuitry has been detected. This logic detects failure of the input structure and hardware associated with the DPMR (door position monitor rear) input. ASME 2000 event.
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. Valid when SAF=1. When DLK is ON (1), input DPMR must also be ON (1). When DOLR=0, DPMR=0. Make sure that DPMR makes (120 VAC) 1 to 2 " prior to door lock. If this is already the case then check associated input resistors, ribbon cable or boards and replace as deemed necessary.

TABLE 5.3 ASME A17.1-2000 Status and Error Messages

Scrolling Message	Special Event Message
DRIVE FAULT / REI REDUNDANCY FAULT (Traction only)	REI Redundancy Fault

Description: A failure of the RE relay has been detected. ASME 2000 event.
Troubleshooting: If FLT relay is picked, then check the following:

- If SAF is low, REI should be low, otherwise this fault is generated.
- If UPS is high or DNS is high, REI should be high, otherwise this fault is generated.
- Verify REI $=0$, otherwise this fault is generated.
- Also check input resistor REI at top left of the SC-SB2K board. Swap ribbon cables between SC-SB2K and SC-HDIO. If swapping ribbons has no effect or if REI resistor is defective, replace SC-SB2K board. Otherwise replace SC-HDIO board.
- Confirm FLT relay is picked when a run is initiated. If not, then a DDP generated failure has occurred. Bypass ASME A17.1 faults and initiate a run. Check event calendar to determine which DDP fault has occurred and troubleshoot accordingly.

DZRX REDUNDANCY FAULT

Door Zone Input Fault

Description: A failure of rear door zone input, relay or associated circuitry has been detected. This logic checks the integrity of the relay used for the auxiliary rear door zone function (DZX). ASME 2000 event.
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. Note that one DZX relay is used for both front and rear auxiliary door zone sensing. If DZR input is OFF, the DZX relay should be dropped out, which is checked by inspecting a NC contact of relay DZX with input RDZX. If input DZR is OFF and the "checking" input RDZX is ON, all is well. If this relationship is not true, the DZRX redundancy fault is logged and the car is shut down. Check associated input resistors, ribbon cable or boards and replace as deemed necessary.

DZX REDUNDANCY FAULT
 Door Zone Input Fault

Description: A failure of a door zone related input, relay or associated circuitry has been detected. Verifies that the "standard" door zone input DZ and the "auxiliary" door zone input DZX both agree. ASME 2000 event.
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. If DZX is ON, then DZ should be ON and RDZX should be OFF. When DZX = OFF, DZ will also be OFF and RDZX will be ON. Check associated input resistors, ribbon cable or boards and replace as deemed necessary.
EBR Button Fault (not scrolled, Event Calendar only)

EBR Button Fault

Description: A failure of the Emergency Brake Reset Pushbutton or EBR input has been detected. Check the scrolling message to see what fault is active, EBR STUCK or EBR FLICKERING FAULT. ASME 2000 event.
Troubleshooting: Once the scrolling message is identified, look up that message in this table.
EBR FLICKERING FAULT (Traction only)
EBR Button Fault
Description: A failure of the Emergency Brake Pushbutton or EBR input has been detected. If the EBR input transitions from low (0) to high (1) six times or more per second, the EBR flickering fault will take the car out of service. ASME 2000 event.
Troubleshooting: Check the EBR input and confirm that it is changing state rapidly. If so, replace the SC-BASE(-D) board. If this does not correct the problem, then replace the SC-HDIO board. Otherwise press the Redundancy Fault Reset pushbutton to clear the fault.

EBR STUCK FAULT (Traction only)

EBR Button Fault

Description: A failure of the Emergency Brake Pushbutton or EBR input has been detected. If the EBR input remains high (1) continuously for 30 seconds the EBR stuck fault will take the car out of service. ASME 2000 event.
Troubleshooting: Confirm that EBR $=1$. The EBR input must be continuously active for 30 seconds to generate this fault. To determine which board has failed, check the EBR resistor on the SC-BASE (-D) board for 0 VAC on the bottom end, if so then replace SC-HDIO board. If there is 120 VAC, then inspect the EBR reset pushbutton and determine if it is truly stuck. If stuck replace SC-BASE(-D), otherwise swap out associated ribbon cable.

EMERGENCY BRAKE ACTIVATED (Traction only) \quad Emergency Brake Activated

Description: The Emergency Brake has been activated. ASME 2000 event.
Troubleshooting:

- Due to ascending car overspeed ($\mathrm{GOV}=0, \mathrm{RUP}=0$) or unintended motion (car out of floor zone with both doors open) this fault is logged and the car is shutdown. Note that there is separate hardware that can set the emergency brake by removing power from the emergency brake power supply. The software system can also set the Emergency Brake by monitoring the same logic (DZ, LU, CD, etc) by dropping the outputs labeled EB1 and EB2. This fault can only be reset by pushing the Emergency Brake Reset pushbutton on the SC-BASE (-D) board.
- Also check input resistors GOV, REB1, REB2, RDZX, RDZ, RDZR, RLU, RLD, RCD, RHD, RCDR and RHDR on the associated board (refer to prints). If both relays EB1 and EB2 are dropped try replacing the EB1/EB2 triacs on the SC-HDIO board. Swap ribbon cables between SC-SB2K and SC-HDIO as well as the ribbons between SC-BASE(-D) and SC-HDIO. If swapping ribbons has no effect or if input resistors are defective, replace SC-SB2K board or SC-BASE(-D). Otherwise replace SC-HDIO board.

TABLE 5.3 ASME A17.1-2000 Status and Error Messages

Scrolling Message	Special Event Message
EMERGENCY BRAKE CYCLE TEST FAULT (Traction only)	End of Run Cycle Test Fault
	Description: A failure of the End of Run Cycle Test has been detected. Indicates that either the input or output structure associated with the emergency brake has failed. At the end of an operating cycle, outputs EB1 and EB2 are sequentially cycled OFF (one at a time). During this process inputs REB1 and REB2 are checked. ASME 2000 event. Troubleshooting: If EB1 output is OFF, then input REB1 will be ON. If not, the Emergency brake cycle test fault is generated and further operation of the lift is prevented. The same test is repeated for EB2 and REB2. Check input resistors ASI1/PFLT, SAF, STOP, REB1, REB2 or RSAFR on the associated board (refer to prints). Swap ribbon cables between SC-SB2K, SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K board. Otherwise replace SC-HDIO or SC-BASE(-D) board.

End of Run Cycle Test Fault (not scrolled, Event Calendar only) \quad End of Run Cycle Test Fault

Description: A failure of the End of Run Cycle Test has been detected. Check the scrolling message to see which faults is active (PLD, CT, ESBYP or EMERGENCY BRAKE CYCLE TEST FAULT or RSAFR CYCLE TEST FAULT or 4 BUS CYCLE TEST FAULT). ASME 2000 event.
Troubleshooting: Check the scrolling message to identify the fault and then look up that fault in this table.

EQR Button Fault (not scrolled, Event Calendar only)	EQR Button Fault

Description: A failure of the Earthquake Reset Pushbutton or EQR input has been detected. Check the scrolling message to see which fault is active: EQR STUCK or EQR FLICKERING FAULT. ASME 2000 event.
Troubleshooting: Check the scrolling message to identify the fault and then look up that fault in this table.

\section*{| EQR FLICKERING FAULT | EQR Button Fault |
| :--- | :--- |}

Description: A failure of the Earthquake Reset Pushbutton or EQR input has been detected. If the EQR input transitions from low (0) to high (1) six times or more per second, the EQR flickering fault will take the car out of service. ASME 2000 event.

Troubleshooting:

- Check the EQR input and confirm that it is changing state rapidly. If so, replace the SC-HDIO board. If this does not correct the problem, then replace the SC-SB2K (-H) board. Otherwise press the Redundancy Fault Reset pushbutton to clear the fault.
- Also check input resistors CWI, EQR, SSI and EDS on the associated board (refer to prints). Swap ribbon cables between SC-SB2K(-H), SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

EQR STUCK FAULT

EQR Button Fault

Description: A failure of the Earthquake Reset Pushbutton or EQR input has been detected. The Earthquake Reset pushbutton input is constantly monitored for correct functionality. If the EQR input remains high (1) continuously for 30 seconds the EQR stuck fault will take the car out of service. ASME 2000 event.

Troubleshooting:

- Confirm that EQR $=1$. The EQR input must be continuously active for 30 seconds to generate this fault.
- To determine which board has failed, check the EQR resistor for 0 VAC on the bottom end, if so then replace SC-HDIO board. If there is 120 VAC , then inspect the EQR reset pushbutton and determine if it is truly stuck, otherwise replace the SC-SB2K (-H) board.
- Also check input resistors CWI, EQR, SSI and EDS on the associated board (refer to prints). Swap ribbon cables between SC-SB2K(-H), SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

ESBYP CYCLE TEST FAULT \quad End of Run Cycle Test Fault

Description:. This fault indicates that either the output, relay or input associated with ESBYP has failed to function as required. At the end of an operating cycle, output ESBYP is cycled ON and then OFF. We expect that relay ESB will pick and drop and we monitor this functionality via input RESBYP. ASME 2000 event.
Troubleshooting: When ESB is OFF, expect that input RESBYP will be ON and visa versa. If not, the ESBYP cycle test fault will be logged and further operation of the lift will be prevented. Check input resistors ASII/PFLT, SAF, STOP, REB1, REB2 or RSAFR on the associated board (refer to prints). Swap ribbon cables between SC-SB2K(-H), SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

ESBYP REDUNDANCY FAULT \quad ESBYP Redundancy Fault

Description: A failure of emergency stop bypass (the ESB relay or ESBYP output) has been detected. ASME 2000 event. If both the ESBYP output (picks relay ESB) and the SAFC input are activated (both ON), the input STOP will be ON (1). If not, an ESBYP redundancy failure is logged. ASME 2000 event.

Troubleshooting:

- If ESBYP $=1$ and SAFC $=1$, STOP should be 1 , otherwise this fault is generated.
- Also check input resistors RESBYP and SAFC on the associated board (refer to prints).
- Swap ribbon cables between SC-SB2K(-H), SC-HDIO.
- If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

TABLE 5.3 ASME A17.1-2000 Status and Error Messages

Scrolling Message	Special Event Message
ETS1 FAULT (Traction only)	Overspeed Fault

Description: Emergency terminal overspeed fault 1 . The main processor monitors the ETS1 signal coming from PLD1. If this signal, which is normally high goes low, the MP2 / PCA looks at its ETS limit switch inputs to determine if a fault should be logged. If so, the car shuts down and logs the ETS1 fault. ASME 2000 event.
Troubleshooting: Run the car and observe if the car does indeed overspeed. If no overspeed condition is truly present we need to re-calibrate the overspeed function that is tripping (ILO, COS, ETS). For the SC-BASE(-D), follow directions in Section \#4 A17.1-2000 Code Compliant Functions and Testing of the adjustment manual. If neither of these attempts proves fruitful at eliminating the fault then first swap out the ribbon cable between the SC-BASE(-D) and SC-HDIO and finally replace the SC-BASE(-D). If the fault still occurs replace the SC-HDIO. The UETS1/2, DETS1/2 limit switches must operate simultaneously!

ETS2 FAULT (Traction only)

Overspeed Fault

Description: Emergency terminal overspeed fault 2. The main processor inspects the ETS2 signal coming from PLD2. If this signal, which is normally high goes low, the MP2 / PCA looks at its ETS limit switch inputs to determine if a fault should be logged. If so, the car shuts down and logs the ETS2 fault. ASME 2000 event.
Troubleshooting: Run the car and observe if the car does indeed overspeed. If no overspeed condition is truly present we need to re-calibrate the overspeed function that is tripping (ILO, COS, ETS). For the SC-BASE(-D), simply directions in Section \#4 A17.1-2000 Code Compliant Functions and Testing of the adjustment manual. If neither of these attempts proves fruitful at eliminating the fault then first swap out the ribbon cable between the $\operatorname{SC-BASE}(-\mathrm{D})$ and SC-HDIO and finally replace the SC-BASE(-D). If the fault still occurs replace the SC-HDIO. The UETS1/2, DETS1/2 limit switches must operate simultaneously!
Front Door Input Fault (not scrolled, Event Calendar only)
Front Door Input Fault
Description: A failure of a front door input, relay or associated circuitry has been detected. Check the scrolling messages to see which fault is active: DCL, DPM, CD, RCD, CDB, HD, RHD, HDB or RHDB REDUNDANCY FAULT. ASME 2000 event.
Troubleshooting Tips: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table.

GOV REDUNDANCY FAULT (Traction only) \quad GOV Redundancy Fault

Description: A failure of the safety string between input GOV and input SAFH has been detected. ASME 2000 event.
Troubleshooting Tips:

- If GOV $=0$, SAFH should be 0 , otherwise this fault is generated.
- Check wiring connections to terminals $15,15 \mathrm{~A}, 15 \mathrm{~B}$ and 16.
- Check wiring connections to all safety devices between terminals $15,15 \mathrm{~A}, 15 \mathrm{~B}$ and 16.
- Also check input resistors GOV and SAFH. Swap ribbon cables between SC-SB2K(-H) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.
H REDUNDANCY FAULT
H Redundancy Fault
Description: Checks the status of the H (high speed) output against the RH input. ASME 2000 event. If relay H is OFF, then the back contact of the H relay, used for monitoring purposes, should close power into input RH (ON). Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. Use diagnostics to determine which is the offending input. Look at the top of the input resistor and measure either 0 or 5 VAC . If voltage is wrong replace $\mathrm{SC}-\mathrm{SB2K}(-\mathrm{H})$. If OK swap C 1 or C 4 ribbons, H triac on HC-PI/O or SC-HDIO.

\section*{| HD REDUNDANCY FAULT | Front Door Input Fault |
| :--- | :--- |}

Description: A failure of a front door lock input, relay or associated circuitry has been detected. HD should be ON (1) when DLK is ON and the car is not in door zone. And, if HD is ON (1), DPM must also be ON (1). ASME 2000 event.
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. Expect HD to be ON when hoistway access has been activated (input ACCI is ON) and either the top (TAB) or bottom (BAB) access switches are activated. If the Hoistway Door Bypass switch has been turned to the bypass position, expect $\mathrm{HD}=\mathrm{ON}$ also. If the above conditions are not true, the HD redundancy fault is logged. First swap the ribbon cables connected between the SC-BASE (-D) board and the SC-HDIO board, then replace the boards SC-BASE(-D) followed by the SC-HDIO (if the problem persists).

HDB REDUNDANCY FAULT

Front Door Input Fault

Description: A failure of a front door input, relay or associated circuitry has been detected. The OFF position feeds input HDBO and the BYPASS position feeds input HDB. So if the switch is OFF, the HDBO input will be ON (1) and the HDB input will be OFF (0).ASME 2000 event.
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. First swap the ribbon cables connected between the SC-BASE(-D) board and the SC-HDIO board, then replace the boards SC-BASE(-D) followed by the SC-HDIO.

HDBR REDUNDANCY FAULT
 Rear Door Input Fault

Description: A failure of a rear door input, relay or associated circuitry has been detected. Both the OFF and BYPASS positions of the Rear Hoistway Door Bypass switch are monitored. The OFF position feeds input HDBOR and the BYPASS position feeds input HDBR. So if the switch is OFF, the HDBOR input will be ON (1) and the HDBR input will be OFF (0). ASME 2000 event. Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. First swap the ribbon cables connected between the SC-BASE(-D) board and the SC-HDIO board, then replace the boards SC-BASE(-D) followed by the SC-HDIO.

TABLE 5.3 ASME A17.1-2000 Status and Error Messages

Scrolling Message	Special Event Message
HDR REDUNDANCY FAULT	Rear Door Input Fault
	Description: A failure of a rear door lock input, relay or associated circuitry has been detected. The status of the rear hoistway door lock input HDR is constantly verified. HDR should be ON (1) when DLK is ON and the car is not in door zone. Expect HDR to be ON when hoistway access has been activated (input ACCI is ON) and either the top (TAB) or bottom (BAB) access switches are activated. If the Hoistway Door Bypass switch has been turned to the bypass position, expect HDR = ON also. ASME 200 event. Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. First swap the ribbon cables connected between the SC-BASER(-D) board and the SC-HDIO board, then swap out the SC-BASER(-D) followed by the SC-HDIO.

HOISTWAY ACCESS \quad Hoistway Access
Description: The hoistway access switch has been activated. ASME 2000 event.
Troubleshooting:

- Confirm that $\mathrm{ACCI}=1$.
- Also check input resistor ACCI on the associated board (refer to prints). Swap ribbon cables between SC-SB2K(-H), SC-HDIO. If swapping ribbons has no effect or if resistor are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

Hoistway Access Input Fault (not scrolled, Event Calendar only)

Hoistway Access Input FIt

Description: A failure of the Hoistway Access input or an Inspection input has been detected. Two Inspection Inputs should never be active at the same time. ASME 2000 event.

Troubleshooting Tips:

- Confirm $\mathrm{ACCI}=1$, $\mathrm{INMR}=0$ and $\mathrm{IN}=0$, otherwise this fault is displayed.
- Also check input resistors ACCI, INMR and IN on the SC-SB2K(-H) board. Swap ribbon cables between SC-SB2K(-H) and SC-HDIO If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.
ILO1 FAULT (Traction only)

Overspeed Fault

Description: Inspection leveling overspeed 1 fault. The main processor monitors the ILO1 signal coming from PLD1. If ILO1 = OFF and IN or LEV are ON we log this fault. ILO stands for Inspection Leveling Overspeed. ASME 2000 event.
Troubleshooting: Run the car and observe if the car does indeed overspeed. If no overspeed condition is truly present we need to re-calibrate the overspeed function that is tripping (ILO, COS, ETS). For the SC-BASE(-D), follow directions in Section \#4 A17.1-2000 Code Compliant Functions and Testing of the adjustment manual. If neither of these attempts proves fruitful at eliminating the fault then first swap out the ribbon cable between the SC-BASE(-D) and SC-HDIO and finally replace the SC-BASE(-D). If the fault still occurs replace the SC-HDIO. Also check for noise on 95/96 (DP1/2) is shield grounded?

ILO2 FAULT (Traction only)

Overspeed Fault

Description: Inspection leveling overspeed 2 fault. The main processor monitors the ILO2 signal coming from PLD2. ASME 2000 event.
Troubleshooting: Run the car and observe if the car does indeed overspeed. If no overspeed condition is truly present we need to re-calibrate the overspeed function that is tripping (ILO, COS, ETS). For the SC-BASE(-D), follow directions in Section \#4 A17.1-2000 Code Compliant Functions and Testing of the adjustment manual. If neither of these attempts proves fruitful at eliminating the fault then first swap out the ribbon cable between the SC-BASE(-D) and SC-HDIO and finally replace the SC-BASE(-D). If the fault still occurs replace the SC-HDIO. Also check for noise on 95/96 (DP1/2); is shield grounded at the controller?

IN CAR INSPECTION \quad In Car Inspection

Description: The In Car Inspection switch has been activated. ASME 2000 event.
Troubleshooting:

- Confirm that $\mathrm{INICI}=1$.
- Also check input resistor INICI on the associated board (refer to prints). Swap ribbon cables between SC-SB2K(-H), SC-HDIO. If swapping ribbons has no effect or if resistor are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

IN REDUNDANCY FAULT

Inspection Input Fault

Description: A failure of the Inspection Inputs has been detected. Two Inspection Inputs should never be active at the same time. ASME 2000 event.
Troubleshooting: If $I N=1$ and $S A F=1$, INUP should be 1 and INDN should be 1 , otherwise this fault is generated. Locate dropping resistor INMR on the SC-SB2K(-H) board. INMR must be at zero volts when IN is ON. Swap ribbon cables between SC-SB2K(-H) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

INCTI REDUNDANCY FAULT

Inspection Input Fault

Description: A failure of the Inspection Inputs has been detected. Two Inspection Inputs should never be active at the same time. ASME 2000 event.
Troubleshooting: Confirm $I N C T I=1, I N I C I=0, A C C I=0, I N M R=0$ and $I N=0$, otherwise this fault is displayed. Use the controller prints to locate dropping resistors IN, INMR and INICI on the SC-SB2K(-H) board and ACCI resistor on the SC-BASE(-D) board, voltage must be OFF when INCTI is ON otherwise the INCTI redundancy fault is logged and the system is shut down. Swap ribbon cables between SC-SB2K(-H) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

TABLE 5.3 ASME A17.1-2000 Status and Error Messages

Scrolling Message	Special Event Message
INDN REDUNDANCY FAULT	INDN Redundancy Fault

Description: A failure of the INDN input has been detected. It may either be high when expected low or low when expected high. ASME 2000 event.
Troubleshooting Tips:

- If IN is high and SAF is low, INDN should be low, otherwise this fault is generated.
- If IN is high and SAF is high, INDN should be high, otherwise this fault is generated.
- If RDN is low, INDN should be high, otherwise this fault is generated.
- If RDN is high, INDN should be low, otherwise this fault is generated.
- Also check input resistors DLK, SAF, IN and INDN on the SC-SB2K(-H) board. Swap ribbon cables between SC-SB2K(-H) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

INICI REDUNDANCY FAULT

Inspection Input Fault

Description: A failure of the Inspection Inputs has been detected. Two Inspection Inputs should never be active at the same time. ASME 2000 event.
Troubleshooting: Confirm $\mathrm{INICI}=1, \mathrm{ACCI}=0, \mathrm{INMR}=0$ and $\mathrm{IN}=0$, otherwise this fault is displayed. Use the controller prints to locate dropping resistors IN and INMR on the SC-SB2K(-H) board and ACCI input resistor on the SC-BASE(-D) board. Voltage must be OFF when INICI is ON , otherwise the INICI redundancy fault is logged and the system is shut down. Swap ribbon cables between SC-SB2K(-H) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

INMR REDUNDANCY FAULT \quad Inspection Input Fault

Description: A failure of the Inspection Inputs has been detected. Two Inspection Inputs should never be active at the same time. ASME 2000 event.
Troubleshooting: If $\operatorname{IN}=1$ and $S A F=1$, INUP should be 1 and INDN should be 1 , otherwise this fault is generated. Swap ribbon cables between SC-SB2K(-H) and SC-HDIO. If swapping ribbons has no effect or if associated 47 K dropping resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

Inspection Input Fault (not scrolled, Event Calendar only)	Inspection Input Fault

Description: A failure of the Inspection Inputs has been detected. Two Inspection Inputs should never be active at the same time. Check the scrolling message to see which fault is active: INCTI, INICI, INMR or IN REDUNDANCY FAULT. ASME 2000 event Troubleshooting: Check the scrolling message to identify the fault and then look up that fault in this table.

INUP REDUNDANCY FAULT

INUP Redundancy Fault

Description: A failure of the INUP input has been detected. It may either be high when expected low or low when expected high. ASME 2000 event.
Troubleshooting:

- If $\operatorname{IN}=1$ and $S A F=0$, INUP should be 0 , otherwise this fault is generated.
- If $\mathrm{IN}=1$ and $\mathrm{SAF}=1, \mathrm{INUP}$ should be 1 , otherwise this fault is generated.
- If RUP $=0$, INUP should be 1 , otherwise this fault is generated.
- If RUP = 1 , INUP should be 0 , otherwise this fault is generated.
- Also check input resistors IN, SAF, RUP and INUP on the SC-SB2K(-H) board. Swap ribbon cables between SC-SB2K(-H) and SCHDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

MOTOR UP TO SPEED FAILURE (Hydro only)

Motor Up to Speed Failure
Description: Indicates that the solid state starter failed to detect the motor was up to speed. ASME 2000 event.
Troubleshooting: For Solid State Starters Only. Increase the Up to Speed Timer in the ASME A17.1 Options Menu. Verify UTS is programmed as a spare input and that it is connected to the proper terminal on the starter.

MPSAF REDUNDANCY FAULT

MPSAF Redundancy Fault

Description: A failure of the SAFR1 relay has been detected. ASME 2000 event. This verifies that when output MPSAF has turned OFF, that relay SAFR1 and TRIAC MPSAF have both released as intended.
Troubleshooting: If the relay and triac have released then input SAF will be OFF (0). If input SAF = ON, the car is shut down with the MPSAF redundancy fault. Verify MPSAF output $=0$ also verify SAFR1 relay is dropped und finally verify SAF input $=0$. If swapping ribbons has no effect or if associated 47 K dropping resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

Overspeed Fault (not scrolled, Event Calendar only)
 Overspeed Fault

Description: Check the scrolling message to see which fault is active: IL01, IL02, ETS2, ETS1, COS1, or COS2 OVERSPEED FAULT. ASME 2000 event.
Troubleshooting: Once the scrolling message is identified, look up that message in this table.

TABLE 5.3 ASME A17.1-2000 Status and Error Messages

Scrolling Messa	Special Event Message
PFLT FAULT (Traction only)	PFLT Fault
Description: Indicates that PLD1 has dropped the PFLT relay. ASME 2000 event. Troubleshooting Tips: - If STOP $=1$ and PFLT $=0$, then this fault is generated and PLD1 has dropped the PFLT relay. - Swap ribbon cables between SC-BASE-(D) and SC-HDIO. If swapping cables has no effect, replace SC-BASE(-D) board. Otherwise replace SC-HDIO board.	
PFLT RELAY DROPPED (Traction only)	PFLT Fault
Description: Indicates that PLD1 has dropped the PFLT relay. ASME 2000 event. Troubleshooting Tips: - If STOP $=1$ and PFLT $=0$, then this fault is generated and PLD1 has dropped the PFLT relay. - Swap ribbon cables between SC-BASE-(D) and SC-HDIO. If swapping cables has no effect, replace SC-BASE(-D) board. Otherwise replace SC-HDIO board.	
PLD CYCLE TEST FAULT (Traction only)	End of Run Cycle Test Fault
Description: A failure of the End of Run Cycle Test has been detected. At the end of an operating cycle outputs CTOS and CTDIF are activated in sequence. Inputs COS1, COS2, ETS1, ETS2, ILO1 and ILO2 must go low. ASME 2000 event. Troubleshooting: If any of the listed inputs fail to transition to OFF, the PLD cycle test fault will be logged and further operation of the lift will be suspended. If the PFLT Bypass Jumper on the SC-BASE (-D) board is left in the ON position and the controller is switched to normal operation, then the controller will find the landing and then during the cycle test it will latch this fault to prevent the system from running. Make sure the PFLT Bypass Jumper is in the OFF position. Check input resistors ASI1/PFLT, SAF, STOP, REB1, REB2 or RSAFR on the associated board (refer to prints). Swap ribbon cables between SC-SB2K(-H), SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.	

RACC1 REDUNDANCY FAULT

Red. Access Input Fault

Description: A failure of a hoistway access related input, relay or associated circuitry has been detected. The RACC1 input monitors an NC contact of relay ACCI. If ACCI input is OFF (0) then input RACC1 should be ON (1). Hence RACC1 is not equal to ACCI. ASME 2000 event.
Troubleshooting:

- If $\mathrm{ACCI}=1$, RACC1 should be 0 , otherwise this fault is generated.
- Or if $\mathrm{ACCI}=0$, RACC1 should be 1 , otherwise this fault is generated.
- Check input resistors RTBAB, RACC1, RACC2, INUP, INDN, ACCI on associated board (refer to prints).
- Swap ribbon cables between SC-SB2K(-H), SC-BASE(-D) and SC-HDIO.
- If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) or SC-BASE(-D) (for RACC1, RACC2) board Otherwise replace SC-HDIO board.
RACC2 REDUNDANCY FAULT
Red. Access Input Fault
Description: A failure of a hoistway access related input, relay or associated circuitry has been detected. The RACC2 input monitors an NC contact of relay ACC2. If ACCI input is OFF (0) then input RACC2 should be ON (1). Hence this fault indicates that RACC2 is not equal to ACCI, not a good thing. ASME 2000 event.

Troubleshooting:

- If $A C C I=1$, RACC2 should be 0 , otherwise this fault is generated.
- If $\mathrm{ACCI}=0$, RACC2 should be 1 , otherwise this fault is generated.
- Check input resistors RTBAB, RACC1, RACC2, INUP, INDN, ACCI on associated board (refer to prints).
- Swap ribbon cables between SC-SB2K(-H), SC-BASE(-D) and SC-HDIO.
- If swapping ribbons has no effect or if associated 47 K input resistors are defective, replace SC-SB2K-(H) or SC-BASE(-D) (for RACC1, RACC2) board. Otherwise replace SC-HDIO board.
RBRK REDUNDANCY FAULT (Traction only)
RBRK Redundancy Fault
Description: A failure of the BK relay or RBK input has been detected. This means a failure to activate when expected or a failure to drop when expected. ASME 2000 event.

Troubleshooting:

- If $S A F=0$, RBK should be 1 , otherwise this fault is generated.
- If $M B=0, R B K$ should be 1 , otherwise this fault is generated.
- If $\mathrm{REI}=1$ and $\mathrm{RPT}=0$ and $\mathrm{RMR}=0$, RBK should be 0 , otherwise this fault is generated.
- Check the NC aux contact of relay BK. It must make up when the relay drops out.
- Also check input resistors RBK, REI and RPT on the SC-SB2K board. Swap ribbon cables between SC-SB2K and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K board. Otherwise replace SC-HDIO board.

RCD REDUNDANCY FAULT

Front Door Input Fault

Description: A failure of a front door input, relay or associated circuitry has been detected. The RCD input monitors a normally closed contact of relay CD. If the CD input is OFF (0), then the $N C$ contact of $C D$ will be made up and input RCD will be ON. If $C D$ is $O N$, RCD will be OFF. ($C D=$ not $R C D$). CD should always be the opposite of RCD. If not, the RCD redundancy fault is logged and the controller is shut down. ASME 2000 event.
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. Check associated input resistors on the SC-SB2K (-H) board. Swap ribbon cables between SC-SB2K (-H) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

TABLE 5.3 ASME A17.1-2000 Status and Error Messages

Scrolling Message	Special Event Message
RCDR REDUNDANCY FAULT	

RCT REDUNDANCY FAULT (Traction only) RCT Redundancy Fault

Description: A failure of the CT (Cycle Test) relay has been detected. ASME 2000 event.
Troubleshooting Tips:

- If $C T=1, R C T$ should be 0 , otherwise this fault is generated.
- If CT $=0, \mathrm{RCT}$ should be 1 , otherwise this fault is generated.
- Check the condition of the CT relay. Replace if defective.
- Also check input resistor RCT. Swap ribbon cables between SC-SB2K and SC-HDIO. If swapping ribbons has no effect or if relay CT is defective replace SC-SB2K board. Otherwise replace SC-HDIO board.

Description: A failure of a redundancy inspection related input, relay or associated circuitry has been detected. ASME 2000 event. Troubleshooting:

- If $\operatorname{INCTI}=0$ and $\operatorname{INICI}=0$, RCTIC should be 1 , otherwise this fault is generated.
- Otherwise RCTIC should be 0 if not this fault is generated.
- Check input resistors RCTIC, RIN1, RIN2, IN, SAF, INCTI and INICI on the associated board (refer to prints).
- Swap ribbon cables between SC-SB2K(-H),and SC-HDIO.
- If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

RDEL1, RDEL2, RDEL3 REDUNDANCY FAULT (Hydro only)

Starter \#1, \#2, \#3 Fault

Description: Only for WYE-DELTA starters. This function checks the status of a normally closed auxiliary contact of relay DELTA. When the car is not running we expect input RDELX to be active (1). When we are running we expect input RDELX to be OFF (0). A few jobs may have more than one DELTA contactor (DELTA1, DELTA2, DELTAX, etc) in this case, when a failure occurs, we display the number of the problematic contactor, ie. RDEL3 Redundancy Fault. ASME 2000 Event.
Troubleshooting: First check the contacts of the normally closed auxiliary that feed the associated input. The logic is written to check for input RDELX to be OFF (0 , that is RDEL1 $=0$) when we have a valid run command as determined by checking that inputs RPM= $\mathrm{UNL}=\mathrm{SAF}=\mathrm{RWYE}=\mathrm{DEL} 1=1$ and $\mathrm{RM} 1=\mathrm{WYEX}=\mathrm{RDELX}=0$. If no run command, then RDELX had better be $=1$. Check voltage at top of associated input resistors on SC-SB2K-H. For those inputs that are ON expect 5 VAC. For those inputs that are OFF expect 0 VAC. If this is not the case replace the SC-SB2K-H. If voltages are good, swap associated ribbon cable and finally swap the SC-HDIO.

RDFV REDUNDANCY FAULT (Hydro only)
 Down Fast Valve Fault

Description: Only for jobs with multiple valves. This logic checks input RDFV $=0$ when $\operatorname{DSD}=\mathrm{VEU}=\mathrm{FUD}=1$ and RDN $=\mathrm{RH}=0$. It also checks that RDFV $=1$ when there is no demand to run the car Down. ASME 2000 Event.
Troubleshooting: Use diagnostics to check on status of above signals. Check voltage at top of associated input resistors on SC-SB2K-H. When the inputs are ON expect 5 VAC. When OFF expect 0 VAC. If this is not the case replace the SC-SB2K-H. If voltages are good, swap associated ribbon cable and finally swap the SC-HDIO

RDN REDUNDANCY FAULT

Direction Input Fault

Description: A failure of a direction related input, relay or associated circuitry has been detected. Verifies the DN relay, DN relay activation circuits and RDN input are functioning as required. ASME 2000 event.
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. If a direction is not invoked on either automatic or inspection operation, then the NC contact of the DN relay, that feeds input RDN, should be closed. Check associated input resistors on the SC-SB2K(-H) board. Swap ribbon cables between SC-SB2K(-H) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

RDSV REDUNDANCY FAULT (Hydro only) Down Slow Valve Fault

Description: Only for jobs with multiple valves. This logic checks input RDSV $=0$ when $\operatorname{SU}, \mathrm{SD}$ or RLULD $=1$ and DNS =1. It also checks that RDSV = 1 when there is no demand to run the car Down. ASME 2000 Event.
Troubleshooting. Use diagnostics to check on status of above signals. Check voltage at top of associated input resistors on SC-SB2K-H. When the inputs are ON expect 5 VAC. When OFF expect 0 VAC. If this is not the case replace the SC-SB2K-H. If voltages are good, swap associated ribbon cable and finally swap the SC-HDIO

RDZ REDUNDANCY FAULT
 Door Zone Input Fault

Description: A failure of a door zone related input, relay or associated circuitry has been detected. The RDZ input monitors an NC contact of relay DZ. If the DZ input is OFF (0), the NC contact of DZ will be made up and input RDZ will be ON. ASME 2000 event. Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. Check associated input resistors on the SC-SB2K (-H) board. Swap ribbon cables between SC-SB2K(-H) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

TABLE 5.3 ASME A17.1-2000 Status and Error Messages

Scrolling Message	Special Event Message
RDZR REDUNDANCY FAULT	Door Zone Input Fault
	Description: A failure of the rear door zone related input, relay or associated circuitry has been detected. This logic checks the integrity of the relay used for the rear door zone function (DZR). If DZR input is OFF, the DZR relay should be dropped out, which is checked by inspecting a NC contact of relay DZR with input RDZR. ASME 2000 event. Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. Check associated input resistors on the SC-BASER(-D) board. Swap ribbon cables between SC-BASER(-D) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-BASER(-D) board. Otherwise replace SC-HDIO board.

RDZX REDUNDANCY FAULT (Traction only) \quad Door Zone Input Fault

Description: A failure of a door zone related input, relay or associated circuitry has been detected. The RDZX input monitors a NC contact of relay DZX. If the car is not located in either a front or rear door zone (flag DZORDZ = OFF), the NC contact of DZX will be made up and input RDZX will be ON. ASME 2000 event.
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. Check associated input resistors on the SC-BASE(-D) board. Swap ribbon cables between SC-BASE(-D) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-BASE(-D) board. Otherwise replace SC-HDIO board.

Rear Door Input Fault (not scrolled, Event Calendar only)	Rear Door Input Fault

Description: A failure of a rear door input, relay or associated circuitry has been detected. Check the scrolling message to see which fault is active: DCLR, DPMR, CDR, RCDR, CDBR, HDR, RHDR, HDBR or RHDBR REDUNDANCY FAULT. ASME 2000 event. Troubleshooting: Once the scrolling message is identified, look up that message in this table.
REB1 REDUNDANCY FAULT (Traction only)

Red. Emergency Brake Fault

Description: A failure of relay EB1 has been detected. REB1 Redundancy Fault is generated if EB1 = 0 and REB1 is not 1 OR if EB1 $=1$ and REB1 is not 0 . Also, if $G O V=0$, REB1 should be 1 and REB2 should be 1 , indicating both relays are dropped. ASME 2000 event.
Troubleshooting Tip:

- Check input resistors REB1 and REB2 on the SC-BASE(-D) board. Swap ribbon cables between SC-BASE(-D) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-BASE(-D) board. Otherwise replace SC-HDIO board.

REB2 REDUNDANCY FAULT (Traction only)

Red. Emergency Brake Fault

Description: A failure of relay EB2 has been detected. REB2 Redundancy Fault is generated if EB2 $=0$ and REB2 is not 1 OR if EB2 $=1$ and REB2 is not 0 . Also, if GOV $=0$, REB1 should be 1 and REB2 should be 1 , indicating both relays are dropped. ASME 2000 event.

Troubleshooting Tips

- Check input resistors REB1 and REB2 on the SC-BASE(-D) board. Swap ribbon cables between SC-BASE(-D) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-BASE(-D) board. Otherwise replace SC-HDIO board.

Redundancy Access Input Fault (not scrolled, Event Calendar only) \quad Red. Access Input Fault
A failure of a hoistway access related input, relay or associated circuitry has been detected. Check the scrolling message to see which fault is active: RACC1, RACC2 or RTBAB REDUNDANCY FAULT. ASME 2000 event.
Troubleshooting: Once the scrolling message is identified, look up that message in this table.
Redundancy Emergency Brake Fault (not scrolled, Event Calendar only) \quad Red. Emergency Brake Fault
Description: A failure of EB1 relay or EB2 relay has been detected. Check the scrolling message to see if REB1 or REB2 REDUNDANCY FAULT is active. ASME 2000 event.
Troubleshooting: Once the scrolling message is identified, look up that message in this table..
Redundancy Inspection Input Fault (not scrolled, Event Calendar only) \quad Red. Inspection Input Fault
Description: A failure of a redundancy inspection related input, relay or associated circuitry has been detected. Check the scrolling message to see which fault is active: RIN1, RIN2 OR RCTIC REDUNDANCY FAULT. ASME 2000 event.
Troubleshooting: Once the scrolling message is identified, look up that message in this table.

REI REDUNDANCY FAULT (Traction only) \quad REI Redundancy Fault

Description: A failure of the RE relay has been detected. ASME 2000 event.
Troubleshooting: If FLT relay is picked, then check the following:

- If SAF is low, REI should be low, otherwise this fault is generated.
- If UPS is high or DNS is high, REI should be high, otherwise this fault is generated.
- Verify REI $=0$, otherwise this fault is generated.
- Also check input resistor REI at top left of the SC-SB2K board. Swap ribbon cables between SC-SB2K and SC-HDIO. If swapping ribbons has no effect or if REI resistor is defective, replace SC-SB2K board. Otherwise replace SC-HDIO board.
- Confirm FLT relay is picked when a run is initiated. If not, then a DDP generated failure has occurred. Bypass ASME A17.1 faults and initiate a run. Check event calendar to determine which DDP fault has occurred and troubleshoot accordingly.

TABLE 5.3 ASME A17.1-2000 Status and Error Messages

Scrolling Message	Special Event Message
RESBYP REDUNDANCY FAULT	RESBYP Redundancy Fault

Description: A failure of the ESB relay has been detected. The fault will be generated if SAFC $=0$ and RESBYP is not 1 , OR if ESBYP $=1$ and RESBYP is not 0 , OR if ESBYP $=0$ and RESBYP is not 1 . ASME 2000 event.
Troubleshooting: Check input resistor RESBYP on SC-SB2K(-H). Swap ribbon cables between SC-SB2K(-H) and SC-HDIO. If swapping ribbons has no effect or if resistor is defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

RFR Button Fault (not scrolled, Event Calendar only) RFR Button Fault

Description: A failure of the Redundancy Fault Reset Pushbutton or RFR input has been detected. Check the scrolling message to see which fault is active: RFR STUCK or RFR FLICKERING FAULT. ASME 2000 event.
Troubleshooting: Once the scrolling message is identified, look up that message in this table.

RFR FLICKERING FAULT \quad RFR Button Fault

Description: A failure of the Redundancy Fault Reset Pushbutton or RFR input has been detected. If the RFR input transitions from low (0) to high (1) six times or more per second, the RFR flickering fault will take the car out of service. ASME 2000 event.
Troubleshooting: Check the RFR input and confirm that it is changing state rapidly. If so, try swapping the ribbon cables between the SC-SB2K (-H) and SC-HDIO. If this does not correct the problem, then replace the SC-HDIO / SC-SB2K (-H) board. Otherwise reset the swing panel / PCA to clear the fault.

RFR STUCK FAULT

RFR Button Fault

Description: A failure of the Redundancy Fault Reset Pushbutton or RFR input has been detected. If the RFR input remains high (1) continuously for 30 seconds the RFR stuck fault will take the car out of service. ASME 2000 event.
Troubleshooting: Confirm that RFR $=1$. To determine which board has failed, check the RFR resistor on board SC-SB2K(-H) for 0 VAC on the bottom end, if so then replace SC-HDIO board. If there is 120 VAC , then inspect the EBR reset pushbutton and determine if it is truly stuck, if so replace the SC-SB2K(-H). Try swapping the ribbon cables between the SC-SB2K(-H) and SC-HDIO. Otherwise replace the SC-SB2K(-H) board.

RH REDUNDANCY FAULT \quad Front Door Input Fault

Description: A failure of the H relay or RH input has been detected. When output H is OFF, input RH should be 1. If relay H's NO contacts weld closed, the monitoring contact will not make up when the H output is turned OFF at the end of a run. If this happens the RH redundancy fault will be logged and the system shut down.If SAF $=0$ and DLK $=0(28$ bit 7$)$, RH should be 1 , otherwise this fault is generated. If $\mathrm{H}=1$ and RLULD $=1$ and RIN2 $=0$ AND there is an intent to move up/down UP - if UNL $=1$ and RUP $=0$ and USD $=1$ DOWN - if DNL $=1$ and $\mathrm{RDN}=0$ and $\mathrm{DSD}=1 \mathrm{RH}$ should be 0 , otherwise this fault is generated. If RH should be 1 , otherwise this fault is generated.
Troubleshooting: Check associated input resistors on the SC-SB2K(-H) board. Swap ribbon cables between SC-SB2K(-H) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K(-H) board. Otherwise replace SC-HDIO board.

RHD REDUNDANCY FAULT (Traction only) \quad Front Door Input Fault

Description: A failure of a front door input, relay or associated circuitry has been detected. The RHD input monitors an NC contact of relay HD. If the HD input is OFF (0), the NC contact of HD will be made up and input RHD will be ON. If HD is ON, RHD will be OFF (HD = not RHD). HD should always be the opposite of RHD. Otherwise, the RHD redundancy fault is logged and the controller is shut down. ASME 2000 event.
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. Check associated input resistors on the SC-SB2K(-H) board. Swap ribbon cables between SC-SB2K(-H) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K(-H) board. Otherwise replace SC-HDIO board.

RHDB REDUNDANCY FAULT
 Front Door Input Fault

Description: A failure of a front door bypass input, relay or associated circuitry has been detected. The RHDB input monitors an NC contact of relay HDB. If the HDB input is OFF (0), the NC contact of HDB will be made up and input RHDB will be ON. If HDB is ON, RHDB will be OFF (HDB = not RHDB). HDB should always be the opposite of input RHDB. Otherwise, the RHDB redundancy fault is logged and the controller is shut down. ASME 2000 event.
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. Check associated input resistors on the SC-BASE (-D) board. Swap ribbon cables between SC-BASE(-D) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-BASE(-D) board. Otherwise replace SC-HDIO board.

RHDBR REDUNDANCY FAULT

Rear Door Input Fault

Description: A failure of a rear door bypass input, relay or associated circuitry has been detected. The RHDBR input monitors an NC contact of relay HDBR. If the HDBR input is OFF (0), the NC contact of HDBR will be made up and input RHDBR will be ON. If HDBR is ON, RHDBR will be OFF (HDBR = not RHDBR). HDBR should always be the opposite of input RHDBR. Otherwise, the RHDBR redundancy fault is logged and the controller is shut down. ASME 2000 event.
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. Check associated input resistors on the SC-BASER (-D) board. Swap ribbon cables between SC-BASER(-D) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-BASER(-D) board. Otherwise replace SC-HDIO board.

TABLE 5.3 ASME A17.1-2000 Status and Error Messages

Scrolling Message	Special Event Message
RHDR REDUNDANCY FAULT	

RIN1 REDUNDANCY FAULT

Red. Inspection Input Fault

Description: A failure of a redundancy inspection related input, relay or associated circuitry has been detected. If SAF $=0$, RIN1 should be 1, otherwise this fault is generated. Or if $\operatorname{IN}=1$, RIN1 should be 0 , otherwise this fault is generated. Or if $\operatorname{IN}=0$, RIN1 should be 1, otherwise this fault is generated. ASME 2000 event.

Troubleshooting:

- Check input resistors RCTIC, RIN1, RIN2, IN, SAF, INCTI and INICI on the associated board (refer to prints).
- Swap ribbon cables between SC-SB2K(-H), and SC-HDIO.
- If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

RIN2 REDUNDANCY FAULT

Red. Inspection Input Fault

Description: A failure of a redundancy inspection related input, relay or associated circuitry has been detected. If $S A F=0$, RIN2 should be 1 , otherwise this fault is generated. Or if $\operatorname{IN}=1, \mathrm{RIN} 2$ should be 0 , otherwise this fault is generated. Or if $\operatorname{IN}=0, R I N 2$ should be 1, otherwise this fault is generated. ASME 2000 event.

Troubleshooting:

- Check input resistors RCTIC, RIN1, RIN2, IN, SAF, INCTI and INICI on the associated board (refer to prints).
- Swap ribbon cables between SC-SB2K(-H), and SC-HDIO.
- If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

RLULD REDUNDANCY FAULT

RLULD Redundancy Fault

Description: A failure of the LU1, LU2, LD1 or LD2 relays or associated circuitry has been detected. If both of the LU and LD inputs $=0$, input RLULD should be 1 . RLULD is also verified "OFF" when running at high RH $=0$, or intermediate speed (INT $=1$,) or the car is on any form of inspection operation as all of these conditions prevent the LU/LD family of relays from picking. Basically, if the leveling inputs are OFF the NC monitoring contacts of these relays should be MADE or the RLULD redundancy fault is logged. ASME 2000 event.
Troubleshooting: Check input resistors LU, LD and RLULD on the associated board (refer to prints). Swap ribbon cables between SC-SB2K(-H) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

RM1, RM2, RM3 REDUNDANCY FAULTS (Hydro only) \quad RM1, RM2, RM3 Redundancy Faults

Description: Only for jobs with M contactors. This function checks the status of a normally closed auxiliary contact of relay MX. When the car is not running we expect input RMX to be active (1). When we are running we expect input RMX to be OFF (0). A few jobs may have more than one M contactor ($\mathrm{M} 1, \mathrm{M} 2, \mathrm{M} 3$) in this case, when a failure occurs, we would display the number of the problematic contactor, ie. RM2 Redundancy Fault. ASME 2000 Event.
Troubleshooting: First, check the contacts of the normally closed auxiliary that feed the associated input. The logic is written to check for input RMX to be OFF (0 , that is $\mathrm{RM} 1=0$) when we have a valid run command as determined by checking that inputs $R P M=U N L=S A F=M 1=1$. If no run command, then $R M X$ must $=1$. Check voltage at top of associated input resistors on SC-SB2K-H For those inputs that are ON expect 5 VAC. For those inputs that are OFF expect 0 VAC. If this is not the case replace the SC-SB2K-H. If voltages are good, swap associated ribbon cable and finally swap the SC-HDIO.

RMR REDUNDANCY FAULT (Hydro only) \quad RMR Redundancy Fault

Description: A failure of the M1, M2 or M12 relays or RMR input has been detected. This means a failure to activate when expected or a failure to drop when expected. If $S A F=0$, RMR should be 1 , otherwise this fault is generated. If $M B=0, R M R$ should be 1 , otherwise this fault is generated. ASME 2000 event.

Troubleshooting:

- Check the NC aux contacts of relays M12, M1 and M2. They must make up when the contactor drops out.
- Also check input resistor RMR on the SC-SB2K(-H) board. Swap ribbon cables between SC-SB2K(-H) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K(-H) board. Otherwise replace SC-HDIO board.

ROFRT REDUNDANCY FAULT (Hydro only)

ROFRT Redundancy Fault

Description: Monitors the OFRT relay for proper operation. If the OFRT relay is ON , the ROFRT input will be OFF. ROFRT should always be the opposite of OFRT, otherwise the ROFRT Redundancy Fault is logged and the elevator shuts down. The elevator will attempt to recover from this fault up to four consecutive times after which this fault will latch and require a manual reset by pressing the fault reset button.
Troubleshooting Tips: Check the OFRT relay for proper operation (Some times we relabel the spare relay on the SC-BAH or SCBAHR and some times we use a small contactor mounted on backplate). Also check the prints to see where the input ROFRT comes in and check 47 K resistor, swap ribbon cable and finally try replacing the associated board (with relay - sometimes relay OFRT is panel mounted) or SC-HDIO.

TABLE 5.3 ASME A17.1-2000 Status and Error Messages

Scrolling Message	Special Event Message
RPLT REDUNDANCY FAULT (Hydro only)	RPLT Redundancy Fault

Description: Only for jobs with multiple starters. This function checks the status of a normally closed contact of starter pilot relay PLT. When the car is not running, we expect input RPLT to be active (1). When we are running, we expect input RPLT to be OFF (0). ASME 2000 Event.
Troubleshooting: First, check the normally closed contact of relay PLT that feeds the input RPLT. Check voltage at top of associated input resistors on SC-SB2K-H. For stopped condition (no demand), expect 5 VAC. For running, expect 0 VAC. If this is not the case, replace the SC-SB2K-H. If voltages are good, swap associated ribbon cable and finally swap the SC-HDIO.

RPM REDUNDANCY FAULT (Hydro only)
 Run Pump Motor Fault

Description: Verifies that input RPM is OFF when it should be by comparing RPM to inputs $S A F=0=D L K=U N L=R P M$. Also, if $V C=1$, RPM should also $=1$. Finally, we verify that $R P M=1$ when $R U P=0$ and either $S U=1, R L U L D=0$ or $V E U=0$ or $I N U P=1$ and $I N=0$. ASME 2000 Event.
Troubleshooting: Use diagnostics to verify the status of the above mentioned inputs.
For those inputs that should be OFF, check for 0 VAC at top of associated resistor on SC-SB2K-H and check for 5 VAC at top of resistors for active (ON) inputs. If not present, replace SC-SB2K-H. Otherwise swap associated ribbon cable or SC-HDIO.

RPT REDUNDANCY FAULT

RPT Redundancy Fault

Description: A failure with the RPT input, PT relay or associated circuitry has been detected. If SAF $=0$ or DLK $=0$ or REI $=0$ then verify RPT = 1. If RUP $=1$ and RDN $=1$ then verify RPT $=1$. Else verify RPT $=0$. ASME 2000 event.
Troubleshooting Tip:

- Check input resistors SAF, DLK, REI, RUP, RDN, and RPT on the associated board (refer to prints). Swap ribbon cables between SC-SB2K(-H), SC-BASE(-D) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

RSAFM REDUNDANCY FAULT (Traction only)
Description: Monitors the SAFM relay for proper operation. If the SAFM relay is ON , the RSAFM input will be OFF. RSAFM should always be the opposite of SAFM, otherwise the RSAFM Redundancy Fault is logged and the elevator shuts down. The elevator will attempt to recover from this fault up to four consecutive times after which this fault will latch and require a manual reset by pressing the fault reset button.
Troubleshooting Tips: Check the SAFM relay for proper operation. Also check the prints to see where the input RSAFM comes in and check 47 K resistor, swap ribbon cable and finally try replacing the associated board (w/ relay) or HC-IOX.

RSAFR CYCLE TEST FAULT
 RSAFR Cycle Test Fault

Description: RSAFR Redundancy Fault; A failure of the either the RSAFR1 or RSAFR2 relays has been detected. ASME 2000 event. Troubleshooting: During cycle test check operation of RSAFR1/2 relays. Next check for 5 VAC at top of RSAFR resistor on the SC-SB2K (-H) board when both are dropped and 0 VAC when either picks. If not present replace SC-SB2K (-H). If present swap C3 ribbon cable or SC-HDIO.

RSAFR REDUNDANCY FAULT \quad RSAFR Redundancy Fault

Description: A failure of the End of Run Cycle Test has been detected. A failure of the SAFR1 or SAFR2 relays, OR a failure of the CSAF or MPSAF outputs, OR a failure of the RSAFR input has been detected. ASME 2000 event.

Troubleshooting Tips:

- If MPSAF $=1$ and 0 VAC @ TP3) and 120 VAC is present at terminal 20 , then verify relay SAFR2 is picked. If SAFR2 is not picked, then check devices between terminal 20 and right coil side of relay SAFR2 for continuity.
- If CSAF output is active (0 VAC @ TP4) and 120 VAC is present at terminal 20 , then verify relay SAFR1 is picked. If SAFR1 is not picked, then check devices between terminal 20 and right coil side of relay SAFR1 for continuity.
- If relays SAFR1 and/or SAFR2 are picked, RSAFR should be 0, otherwise this fault is generated.
- Also check input resistor RSAFR. Swap ribbon cables between SC-SB2K(-H) and SC-HDIO. If swapping ribbons has no effect, swap triacs on SC-HDIO labeled MPSAF. Or, if RSAFR resistor is defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

TABLE 5.3 ASME A17.1-2000 Status and Error Messages

		Scrolling Messag	
		TOP REDUNDANCY FAULT	RSTOP Redundancy Fault
	Description: A failure of the In Car Stop Switch has been detected. If RSTOP = 0 and SAFC $=1$, STOP should be 1 , otherwise this fault is generated. If RSTOP $=1$ and ESBYP $=0$, STOP should be 0 , otherwise this fault is generated. ASME 2000 event. Troubleshooting Tips:- If the In Car Stop Switch is in the RUN position, then the expected results are SAFC $=1$, STOP $=1$ and RSTOP $=0$. - If this is not the case, then trace the signal from the source to determine the failed component. - Begin at the input terminal. If the voltage here is not correct (120VAC for high signals and OVAC for low signals), then the problem lies outside of the controller equipment. - Next check the voltage at the similarly named input resistor. If the voltage here is not correct (5VAC for high signals and OVAC for low signals), then the problem lies on this board. If the resistor is still good (typically 47kOhms), then the board should be replaced. - Check for a defective ribbon cable by swapping it. - Finally, replace the input board (HC-PIO, SC-HDIO, IOX, I4O depending on the input). - If the In Car Stop Switch is in the STOP position, then the expected results are ESBYP = $0, \mathrm{STOP}=0$ and RSTOP $=1$. - Follow the above checks with the additional step for validating ESBYP. ESBYP must be low for this event to occur so, confirm that relay ESBYP is dropped. If it isn't, then replace the ESBYP triac, ribbon cable, SC-HDIO board, or SC-SB2K(-H) board one at a time until the problem is corrected.		

RSYNC REDUNDANCY FAULT (Hydro only)

RSYNC Redundancy Fault

Description: Monitors the SYNC relay for proper operation. If the SYNC relay is ON , the RSYNC input will be OFF. RSYNC should always be the opposite of SYNC, otherwise the RSYNC Redundancy Fault is logged and the elevator shuts down.
Troubleshooting Tips: : Check the SYNC relay for proper operation (Some times we relabel the spare relay on the SC-BAH or SCBAHR and some times we use a small contactor mounted on backplate). Also check the prints to see where the input RSYNC comes in and check 47 K resistor, swap ribbon cable and finally try replacing the associated board (w/ relay) or SC-HDIO.

RTBAB REDUNDANCY FAULT

Red. Access Input Fault

Description: A failure of a hoistway access related input, relay or associated circuitry has been detected. The RTBAB input monitors NC contacts of relays TAB and BAB. If RACC1 input is ON (1) then input RACC2 should be ON (1). Hence RACC1 = RTAB. If RACC1 $=1$, RTBAB should be 1, otherwise this fault is generated. If INUP $=0$ and INDN $=0$, RTBAB should be 1 , otherwise this fault is generated. Else RTBAB should be 0 , otherwise this fault is generated. ASME 2000 event.

Troubleshooting:

- Check input resistors RTBAB, RACC1, RACC2, INUP, INDN, ACCI on associated board (refer to prints).
- Swap ribbon cables between SC-SB2K(-H), SC-BASE(-D) and SC-HDIO.
- If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) or SC-BASE(-D) (for RACC1, RACC2) board. Otherwise replace SC-HDIO board.

RUDX1 REDUNDANCY FAULT (Traction only)
 Direction Input Fault

Description: Monitors the UP2 and DN2 relays. When the elevator is in motion either the UP2 or DN2 relays will be picked, depending on the direction of the car. Therefore the RUDX1 input must be active while the car is in motion and inactive when the car is stopped. Troubleshooting Tips: Check UP2 and DN2 relays. Also check RUDX1/ASI5 input resistor on the SC-HDIO board (refer to prints). If 47 K resistor is defective, replace SC-HDIO board. Otherwise replace UP2 or DN2 relays.

RUDX2 REDUNDANCY FAULT (Traction only)

Direction Input Fault

Description: Monitors the UP2 and DN2 relays. When the elevator is in motion either the UP2 or DN2 relays will be picked, depending on the direction of the car. Therefore the RUDX2 input must be active while the car is in motion and inactive when the car is stopped. Troubleshooting Tips: Check UP2 and DN2 relays. Also check RUDX2/ASI6 input resistor on SC-HDIO board (refer to prints). If 47 K resistor is defective, replace SC-HDIO board. Otherwise replace UP2 or DN2 relays.

RUDX3 REDUNDANCY FAULT (Traction only)

Description: Monitors the UP2 and DN2 relays. When the elevator is in motion either the UP2 or DN2 relays will be picked, depending on the direction of the car. Therefore the RUDX3 input must be active while the car is in motion and inactive when the car is stopped. Troubleshooting Tips: Check UP2 and DN2 relays. Also check RUDX3/ASI7 input resistor on SC-HDIO board (refer to prints). If 47 K resistor is defective, replace SC-HDIO board. Otherwise replace UP2 or DN2 relays.
RUDX4 REDUNDANCY FAULT (Traction only)
Description: Monitors the UP2 and DN2 relays. When the elevator is in motion either the UP2 or DN2 relays will be picked, depending on the direction of the car. Therefore the RUDX4 input must be active while the car is in motion and inactive when the car is stopped. Troubleshooting Tips: Check UP2 and DN2 relays. Also check RUDX4/ASI8 input resistor on SC-HDIO board (refer to prints). If 47 K resistor is defective, replace SC-HDIO board. Otherwise replace UP2 or DN2 relays.
RUFV REDUNDANCY FAULT (Hydro only)

Up Fast Valve Fault

Description: Only for jobs with multiple valves. This logic checks input RUFV $=0$ when USD $=\mathrm{VEU}=\mathrm{FUD}=1$ and $\mathrm{RUP}=\mathrm{RH}=0$. It also checks that RUFV $=1$ when there is no demand to run the car Up. ASME 2000 Event.
Troubleshooting: Use diagnostics to check on status of above signals. Check voltage at top of associated input resistors on SC-SB2K-H. When the inputs are ON, expect 5 VAC . When OFF, expect 0 VAC . If this is not the case, replace the SC-SB2K-H. If voltages are good, swap associated ribbon cable and finally swap the SC-HDIO

TABLE 5.3 ASME A17.1-2000 Status and Error Messages

Scrolling Message	Special Event Message
RUP REDUNDANCY FAULT	Direction Input Fault
	Description: A failure of a UP direction related input, relay or associated circuitry has been detected. Checks that the UP relay, UP relay activation circuits and RUP input are functioning as required. ASME 2000 event. Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. If a direction is not invoked on either automatic or inspection operation, then the NC contact of the UP relay, that feeds input RUP, should be closed. Thus RUP = ON. Check associated input resistors on the SC-SB2K(-H) board. Swap ribbon cables between SC-SB2K(-H) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K(-H) board. Otherwise replace SC-HDIO board.

RUSV REDUNDANCY FAULT (Hydro only) \quad RUSV Redundancy Fault

Description: Only for jobs with multiple valves. This logic checks input RUSV $=0$ when SU, SD or RLULD $=1$ and UPS $=1$. It also checks that RUSV $=1$ when there is no demand to run the car Up. ASME 2000 Event.
Troubleshooting. Use diagnostics to check on status of above signals. Check voltage at top of associated input resistors on SC-SB2K-H. When the inputs are ON, expect 5 VAC. When OFF, expect 0 VAC . If this is not the case, replace the SC-SB2K-H. If voltages are good, swap associated ribbon cable and finally swap the SC-HDIO.

RWYE1, RWYE2, RWYE3 REDUNDANCY FAULTS(Hydro only)

Starter \#1, \#2, \#3 Fault

Description: This function checks the status of a normally closed auxiliary contact of relay WYE (or A for Across the Line Starters). When the car is not running, we expect input RWYEX to be active (1). When we are running we expect input RWYEX to be OFF (0). A few jobs may have more than one WYE contactor (WYE1, WYE2, WYEX, etc). In this case, when a failure occurs, we display the number of the problematic contactor, ie. RWYE2 Redundancy Fault. ASME 2000 Event.
Troubleshooting: First check the contacts of the normally closed auxiliary that feed the associated input. The logic is written to check for input RWYEX to be OFF (0 , that is RWYE1=0) when we have a valid run command as determined by checking that inputs $\mathrm{UNL}=\mathrm{SAF}=\mathrm{M} 1=\mathrm{WYEX}=$ RDELX (if wye-delta starter) $=1$. If no run command, then RWYEX had better be $=1$. Check voltage at top of associated input resistors on SC-SB2K-H. For those inputs that are ON, expect 5 VAC . For those inputs that are OFF, expect 0 VAC. If this is not the case, replace the SC-SB2K-H. If voltages are good, swap associated ribbon cable and finally swap the SC-HDIO.

SAFC REDUNDANCY FAULT

SAFC Redundancy Fault
Description: A failure of the safety string between input SAFC and input STOP has been detected. If SAFC $=0$, STOP should be 0 , otherwise this fault is generated. ASME 2000 event.
Troubleshooting Tips:

- Check wiring connections to terminals 18 and 20.
- Check wiring connections to the IN-CAR STOP SWITCH.
- Also check input resistors STOP and SAFC. Swap ribbon cables between SC-SB2K(-H) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

SAFH REDUNDANCY FAULT

SAFH Redundancy Fault
Description: A failure of the safety string between input SAFH and input SAFC has been detected. If SAFH $=0$, SAFC should be 0 , otherwise this fault is generated. ASME 2000 event.
Troubleshooting Tips:- Check wiring connections to terminals 16, 17 and 18.

- Check wiring connections to all safety devices between terminals 16, 17 and 18 .
- Also check input resistors SAFH and SAFC. Swap ribbon cables between SC-SB2K(-H) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

STARTER FAULT RELAY DROPPED (Hydro only)	Starter Fault Relay Dropped

Description: Indicates that the solid state starter has dropped the fault relay. ASME 2000 Event.
Troubleshooting: For Solid State Starters Only. Confirm that the Fault Relay has truly dropped. If not, then check the wiring. Otherwise refer to the Starter Manufacturers manual.

\section*{| TEST REDUNDANCY FAULT | TEST Redundancy Fault |
| :--- | :--- |}

Description: A failure of the TEST/NORMAL switch, input or associated circuitry has been detected. ASME 2000 event. Troubleshooting: The switch can't be in the NORMAL and TEST positions at the same time.

- If TEST $=0$, meaning the switch is in the TEST position, IND should be 1 , otherwise this fault is generated.
- Check input resistors TEST and IND on the associated board (refer to prints).
- Swap ribbon cables between SC-SB2K(-H), SC-HDIO.
- If swapping ribbons has no effect or if resistors are defective, replace SC-SB2K-(H) board. Otherwise replace SC-HDIO board.

TABLE 5.3 ASME A17.1-2000 Status and Error Messages

Scrolling Message	Special Event Message
UETS REDUNDANCY FAULT (Traction only)	Emer. Terminal Sw. Failure

Description: This fault is displayed when an inconsistency is detected between the Up Emergency Terminal Switches. ASME 2000 event.

Troubleshooting:

- Check the condition of the ETS switches. The UETS1/2 limit switches must operate simultaneously.
- Check the wiring to the relay board (SC-SB2K(-H)) and IO board (SC-HDIO).
- Verify UETS1 equals UETS2 and the car is in door zone.
- Also check input resistors UETS1 and ASI2/UETS2 on the associated board (refer to prints). Swap ribbon cables between SC-BASE(-D) and SC-HDIO. If swapping ribbons has no effect or if resistors are defective, replace SC-BASE(-D) board. Otherwise replace SC-HDIO board.

UFV REDUNDANCY FAULT (Hydro only) Up Fast Valve Fault

Description: Input UFV checks the status of the up terminal speed reducing switches. We simply compare input UFV against input UTSRL. If UFV is not equal to UTSRL, we assert this fault. Hence these switches must open up simultaneously. ASME 2000 event. Troubleshooting: Check that the limit switches are opening within one second of each other as the car approaches the top terminal landing. If they are, then use diagnostics to determine the status of the inputs. Check voltage at top of associated input resistors on SC-SB2K-H. When the inputs are ON, expect 5 VAC. When OFF, expect 0 VAC. If this is not the case, replace the SC-SB2K-H. If voltages are good, swap associated ribbon cable and finally swap the SC-HDIO.

UNL REDUNDANCY FAULT (Hydro only)

Direction Input Fault

Description: Input UNL checks the status of the UNL relay against the up normal limit switch when the doors are locked. We simply compare input UNL against input UNLS. If UNL is not equal to UNLSL, we assert this fault. Hence these switches must open up simultaneously. ASME 2000 Event.
Troubleshooting: Check that both the limit switch and relay are activating/deactivating within one second of each other as the car approaches the top terminal landing. If they are, then use diagnostics to determine the status of the inputs. Check voltage at top of associated input resistors on SC-SB2K-H. When the inputs are ON expect 5 VAC. When OFF expect 0 VAC. If this is not the case replace the SC-SB2K-H. If voltages are good, swap associated ribbon cable and finally swap the SC-HDIO

UP NORMAL LIMIT SWITCH OPEN

Direction Input Fault

Description: A failure of a direction related input, relay or associated circuitry has been detected. If SAF=1 and DLK=1 and the car is above the Up Normal Limit Switch (UNL=0), then this status is displayed. ASME 2000 event.
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. Verify SAF=1 and DLK=1 and move the car below the Up Normal Limit (UNL=1). In most cases we simply need to move the limit switch further into the terminal.
UPDIR REDUNDANCY FAULT (Traction only)

Direction Input Fault

Description: A failure of a direction related input, relay or associated circuitry has been detected. Valid when SAF=1. Input UPDIR is created by the SC-BASE(-D) board and represents resolved direction from the speed sensor. ASME 2000 event.
Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. Input UPDIR must always be the opposite of RUP. If the main processor detects that the resolved direction (UPDIR form SC-BASE(-D)) does not agree with the intended direction (RUP from MP2 / PCA), the system is shut down with the UPDIR redundancy fault. Check that the UP LED on the SC-BASE-D) is ON when car motion is up and OFF when car motion is down. Swap associated Ribbons cables between SC-BASE(-D) and SC-HDIO, check 95 and 96 signals (0 to 55VDC), swap SC-BASE(-D) or SC-HDIO.

UPS REDUNDANCY FAULT

Direction Input Fault

Description: A failure of a direction related input, relay or associated circuitry has been detected. Valid when $S A F=1$. Determines if the up sense input (UPS) agrees with the intended direction (RUP) once the doors are closed and locked (DLK). ASME 2000 event. Troubleshooting: See the note, GENERAL TROUBLESHOOTING TIPS, just prior to this table. Once DLK is ON (1), if UPS is ON (1), then RUP must be OFF (0). If this is not the case, the system is shut down with the UPS redundancy fault. Check associated input resistors, swap boards or ribbon cables to correct.

UTS REDUNDANCY FAULT (Hydro only)

UTS Redundancy Fault

Description: Only for solid state starters. This input validates that the "Up To Speed" (UTS) signal is low (OFF) when either WYE or DEL are OFF (0). If UTS is ON, we set this fault. For jobs with multiple starters, we have UTS1, UTS2, etc. ASME 2000 Event. Troubleshooting. Use diagnostics to check on status of WYE, DEL and UTS as above. Check voltage at top of associated input resistors on SC-SB2K-H. When the inputs are ON, expect 5 VAC. When OFF, expect 0 VAC. If this is not the case, replace the SC-SB2K-H. If voltages are good, swap associated ribbon cable and finally swap the SC-HDIO.
5.3.6.3 ELEVATOR POSITION - The underlined section in this display shows the current elevator position relative to the bottom. The number 1 denotes the lowest landing in the

D NORMAL OPERATI
PI 8 20:10110011 elevator system.
5.3.6.4 COMPUTER INTERNAL MEMORY - The underlined section in this display shows the computer's internal memory address (2 digits) and the data (8 digits) at that address. The

D NORMAL OPERATI PI 8 20:10110011 colon character (:) separates the address from the data. The address is changed by first pressing the \mathbf{N} pushbutton, then the + and - pushbuttons.

Each of the 8 data digits (flags) corresponds to a particular elevator signal or condition. There are 8 pieces of information about the elevator at each memory address. Each data digit is either 1 or 0.1 indicates the signal or condition is $O N$ and 0 indicates it is off.

The Computer Internal Memory Chart (Table 5.4) indicates the meaning of these data digits at different addresses.

For example, the internal memory display might look like this:

```
D NORMAL OPERATI
PI 8 29:11110000
```

The address on the display is 29; the data at that address is 11110000. To figure out what this means, simply match up the data digits with row 29 of the Computer Internal Memory Chart:

Notice that the DNDO, LD, DPD and DDP signals are ON and the UPDO, LU, UPD and UDP signals are OFF.

TABLE 5.4 Computer Internal Memory Chart

FLAGS AND VARIABLES								
ADD	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
$10:$	DOLMR	PHER	DZR	DOLR	DBCR	DOBR	GEUR	GEDR
$11:$	TFAR	DCR	UCR	CCR	NDSR	FDCR	DHOR	DOIR
$12:$	DCFR	DCPR	DOFR	LOTR	GHTR	HCTR	CCTR	SDTR
$13:$	DOCR	SER	DCLCR	CSBR	DCCR	NUDGR	NDGBPSR	DSHTR
$20:$	DOLM	PHE	DZ	DOL	DBC	DOB	GEU	GED
$21:$	TFA	DC	UC	CC	NDS	FDC	DHO	DOI
$22:$	DCF	DCP	DOF	LOT	GHT	HCT	CCT	SDT
$23:$	DOC	SE	DCLC	CSB	DCC	NUDG	NDGBPS	DSHT
$24:$	VCI	FRA	FCS	FRS	DNS	UPS	STD/R0	STU/R1
$25:$	SCE	FCCC	FCHLD	HLI	VCA	EXMLT	FWI	PIC
$26: ~$	LFP	UFP	NYDS	CCH	DIN	DPR	GTDE	GTUE
$27:$	HD	FCOFF	DHLD	IND	IN	DLKS	MLTP	MLTDO
$28:$	LLW	DLK	DDF	SUD	ISR	INCF	REAR	LLI
$29: ~$	DNDO	LD	DPD	DDP	UPDO	LU	UPD	UDP
$2 A: ~$	DMD	DCB	UCB	CCB	DMU	DCA	UCA	CCA

2B:	TOS	MLT	VLT	SST	H	HSEL	DSH	RUN
2C:	DZP	STC	SAF	HCR	HCDX	CCD	ISV	ISRT
2D:	TEMPB	UFQ	DZORDZ	FCSM	FRM	FRSS	FRAS	FRC
2E:	SD	SDA	DSD	BFD	SU	SUA	USD	TFD
2F:	FRBYP	FRON	HYD1_TRC0	ECC	CD	ECRN	EPR	PFG
30:	R4	R2	R3	FREE	DEADZ	DHLDI	PH1	NDGF
31:	CTLDOT	CTLF	CTL	ALV	EPSTP	AUTO	EPRUN	EPI
33:	API	SAB	TEST	DHENDR	DHEND	CTST	HOSPH2	HOSP
38:	HML	SLV	CCC	CNFG	DLI	DLW	LWCE	HLW
42:	COMMUNICATION TIME-OUT ERROR COUNT							
$43: ~$								

5.3.7 TROUBLESHOOTING USING THE COMPUTER'S INTERNAL MEMORY

Examining the computer memory (as in the example above) is a useful step in troubleshooting elevator problems. It is possible to find out if the controller is receiving input signals correctly and if it is sending out the proper output signals. It is also possible to look up each of the computer output and input signals shown in the Job Prints.

The following example illustrates how to use Tables 5.4 and 5.5 to check a signal in the computer internal memory.

Example problem: the photo eye will not cause the doors to reopen.
Step 1: Look at Table 5.5. Find the abbreviation or mnemonic for Photo Eye input. Table 5.5 shows that the mnemonic for Photo Eye input is PHE.

Step 2: Look for PHE on Table 5.5. Table 5.5 gives an Address (Addr) and Position for each signal. This will show where to look for the signal on Table 5.4 and on the computer display.

Table 5.5 shows that the Address of PHE is 20 and the Position is 7 .
Step 3: Notice on Table 5.4 that PHE is indeed in Position 7 on row 20.
Step 4: Now that the Address and Position have been determined, look up the PHE signal on the computer. First, change the address on the display to address 20 (see Sections 5.3.2 and 5.3.3 for an explanation). Then, look at data bit number 7 (from the right), which is underlined in the

D NORMAL OPERATI
PI 8 20:10110000 following display:

This digit represents the computer's interpretation of the PHE signal. If the digit is 1 , the computer thinks that the PHE signal is ON. If the digit is 0 (as shown above), the computer thinks that the PHE signal is OFF.

This information can be used to find the source of the problem. The diagnostic display will show that the PHE input is $O N$ when an obstruction is present which should interrupt the photo eye beam. If this is the case, checking the voltage present on the PHE terminal will show if the problem is inside or outside the controller.

TABLE 5.5 Alphabetized Flags/Variables and Their Locations

FLAG	Definition	Addr	Position	FLAG	Definition	Addr	Position
ALV	Other car alive output	31	5	FRS	Fire phase 1 input	24	5
API	Alternate Parking Input	33	8	FRSS	Fire phase 1 flag	2D	3
AUTO	Emergency power auto output	31	3	FWI	Fire warning indicator output	25	2
BFD	Bottom floor demand flag	2E	5	GED	Gong enable down output	20	1
CC	Car call flag	21	5	GEDR	Gong enable down output (rear)	10	1
CCA	Car call above flag	2A	1	GEU	Gong enable up output	20	2
CCB	Car call below flag	2A	5	GEUR	Gong enable up output (rear)	10	2
CCC	Car call cancel input	38	6	GHT	Gong hold timer flag	22	4
CCD	Car call disconnect flag	2 C	3	GHTR	Gong hold timer flag (rear)	12	4
CCH	Car call hold	26	5	GTDE	Gong timer down enable	26	2
CCR	Car call flag (rear)	11	5	GTUE	Gong timer up enable	26	1
CCT	Car call time flag	22	2	H	High speed output	2B	4
CCTR	Car call time flag (rear)	12	2	HCDX	Hall call disconnect flag	2 C	4
CD	Car done flag	2 F	4	HCR	Hall call reject flag	2 C	5
CNFG	Configuration error flag	38	5	HCT	Hall call door time flag	22	3
CSB	Car stop switch bypass	23	5	HCTR	Hall call door time flag (rear)	12	3
CSBR	Car stop switch bypass (rear)	13	5	HD	High speed delay flag	27	8
CTL	Car to lobby input	31	6	HLI	Heavy load input	25	5
CTLDOT	Car to lobby door open timer	31	8	HLW	Heavy load weigher flag	38	1
CTLF	Car to lobby function	31	7	HML	Home landing input	38	8
CTST	Capture for test input	33	3	HOSP	In car hospital emergency input flag	33	1
DBC	Door close button input	20	4	HOSPH2	Hospital emergency phase 2 flag	33	2
DBCR	Door close button (rear)	10	4	HSEL	Hospital service select flag	2B	3
DC	Down call flag	21	7	HYD1-TR0	Hydro/Traction flag	2F	6
DCA	Down call above flag	2A	3	IN	Inspection or access input	27	4
DCB	Down call below flag	2A	7	INCF	Independent service car call cancel flag	28	3
DCC	Door close complete flag	23	4	IND	Independent service input	27	5
DCCR	Door close complete flag (rear)	13	4	ISR	In service and ready	28	4
DCF	Door close function output	22	8	ISRT	In service truly flag	2 C	1
DCFR	Door close function output (rear)	12	8	ISV	In service flag	2 C	2
DCLC	Door close contact input	23	6	LD	Level down input	29	7
DCLCR	Door close contact input (rear)	13	6	LFP	Lower parking floor flag	26	8
DCP	Door close power output	22	7	LLI	Light load input	28	1
DCPR	Door close power output (rear)	12	7	LLW	Light load weighing function input flag	28	8
DCR	Down call flag (rear)	11	7	LOT	Lobby door time	22	5
DHENDR	Door hold end rear	33	5	LOTR	Lobby door time (rear)	12	5
DDF	Double ding function flag	28	6	LU	Level up input	29	3
DDP	Down direction preference flag	29	5	LWCE	Load weighing change enable flag	38	2
DEADZ	Dead zone flag	30	4	MLT	Motor limit timer flag	2B	7
DHEND	Door hold end	33	4	MLTDO	Motor limit timer door open	27	1
DHLD	Door hold input flag	27	6	MLTP	Motor limit timer pilot flag	27	2
DHLDI	Normal door hold input flag	30	3	NDGBPS	Nudging bypass flag	23	2
DHO	Door hold open flag	21	2	NDGBPSR	Nudging bypass flag (rear)	13	2
DHOR	Door hold open flag (rear)	11	2	NDGF	Nudging function flag	30	1
DIN	Door open inactive	26	4	NDS	Hall door timer non-shorten	21	4
DLI	Dispatch Load Input	38	4	NDSR	Hall door timer non-shorten (rear)	11	4
DLK	Door lock input	28	7	NUDG	Nudging output	23	3
DLKS	Door lock store bit	27	3	NUDGR	Nudging output (rear)	13	3
DLW	Dispatch load weighing function	38	3	NYDS	New York door shortening flag	26	6
DMD	Demand down flag	2A	8	PFG	Passing floor gong output	2F	1
DMU	Demand up flag	2A	4	PH1	Phase 1 return complete flag	30	2
DNDO	Down direction output	29	8	PHE	Photo eye input	20	7

FLAG	Definition	Addr	Position	FLAG	Definition	Addr	Position
DNS	Down direction sense input	24	4	PHER	Photo eye input (rear)	10	7
DOB	Door open button input	20	3	PIC	PI correction flag	25	1
DOBR	Door open button input (rear)	10	3	R2	Absolute floor encoding \#2	30	7
DOC	Door open command	23	8	R3	Absolute floor encoding \#3	30	6
DOCR	Door open command (rear)	13	8	R4	Absolute floor encoding \#4	30	8
DOF	Door open function output	22	6	REAR	Rear door flag	28	2
DOFR	Door open function output (rear)	12	6	RUN	Run flag	2B	1
DOI	Door open intent flag	21	1	SAB	Sabbath input	33	7
DOIR	Door open intent flag (rear)	11	1	SAF	Safety string input	2C	6
DOL	Door open limit input	20	5	SCE	Stepping correction enable	25	8
DOLM	Door open limit memory flag	20	8	SD	Supervisory down flag	2E	8
DOLMR	Door open limit memory flag (rear)	10	8	SDA	Down direction arrow	2E	7
DOLR	Door open limit (rear)	10	5	SDT	Short door time flag	22	1
DPD	Down previous direction	29	6	SDTR	Short door time flag (rear)	12	1
DPR	Door protection timer flag	26	3	SE	Safety edge input	23	7
DSD	Down slow down input	2E	6	SER	Safety edge input (rear)	13	7
DSH	Door shortening flag	2B	2	SLV	Stable slave flag	38	7
DSHT	Door shortening flag	23	1	SST	Soft stop timer flag	2B	5
DSHTR	Door shortening flag (rear)	13	1	STC	Stepping complete flag	2C	7
DZ	Door zone input	20	6	STD/R0	Step down input/absolute floor encoding \#0	24	2
DZORDZ	Front or rear door zone input	2D	6	STU/R1	Step up input/absolute floor encoding \#1	24	1
DZP	Door zone previous	2 C	8	SU	Supervisory up flag	2E	4
DZR	Door zone input (rear)	10	6	SUA	Up direction arrow	2E	3
ECC	Excess car calls flag	2F	5	TEMPB	Temporary bit	2D	8
ECRN	Emergency car run flag	2 F	3	TEST	Test switch input	33	6
EPI	Emergency power input flag	31	1	TFA	Timing function active	21	8
EPR	Emergency power return	2F	2	TFAR	Timing function active (rear)	11	8
EPRUN	Emergency power run input	31	2	TFD	Top floor demand flag	2E	1
EPSTP	Emergency power stop input	31	4	TOS	Timed out of service flag	2B	8
EXMLT	External Motor Limit Timer	25	3	UC	Up call flag	21	6
FCCC	Fire phase 2 car call cancel	25	7	UCA	Up call above flag	2 A	2
FCHLD	Fire phase 2 hold	25	6	UCB	Up call below flag	2A	6
FCOFF	Fire phase 2 off	27	7	UCR	Up call flag (rear)	11	6
FCS	Fire phase 2 input	24	6	UDP	Up direction preference	29	1
FCSM	Fire service phase 2 input memory	2D	5	UFP	Upper parking floor flag	26	7
FDC	Door fully closed phase 2	21	3	UFQ	Up first qualifier flag	2D	7
FDCR	Door fully closed phase 2 (rear)	11	3	UPD	Up previous direction	29	2
FRA	Alternate Fire service phase 1 input	24	7	UPDO	Up direction output	29	4
FRAS	Alternate fire flag	2D	2	UPS	Up direction sense input	24	3
FRBYP	Fire phase 1 bypass input flag	2F	8	USD	Up slow down input	2E	2
FRC	Fire phase 2 flag	2D	1	VCA	Viscosity active	25	4
FREE	No demand and in service	30	5	VCI	Viscosity Input	24	8
FRM	Fire service phase 1 flag	2D	4	VLT	Valve limit timer	2B	6
FRON	Fire phase 1 on input flag	2F	7				

5.3.8 TROUBLESHOOTING SPECIFIC PROBLEMS

This section will describe how to solve some specific problems by using the computer panel.
5.3.8.1 PROBLEM: THE BFD/TFD ERROR MESSAGE IS FLASHING ON THE DISPLAY -

As shown in Table 5.2, the message means that there is either a Bottom Floor Demand or a Top Floor Demand. The controller is trying to establish the position of the car by sending it to either the bottom or top floor.

NOTE: If the controller has the Absolute Floor Encoding feature, then the controller can establish the position of the car as soon as the car reaches any door zone. The car does not have to travel to a terminal landing to establish the position of the car.

It is normal for the BFD/TFD message to appear on the display right after power up, after the car is taken off Inspection, or after the COMPUTER RESET button is pressed. However, in all of these cases, the BFD/TFD message should be cleared quickly and then it should not be seen again as the car runs on Normal service.

If the BFD/TFD message is flashing for no apparent reason, take the following steps:
The first step in troubleshooting is to decide which of the following scenarios applies:
Scenario A: The car is stuck at the bottom floor with the BFD/TFD error message flashing constantly.
-OR-
Scenario B: The car runs normally until it reaches the top floor, then the BFD/TFD error message flashes and the car goes to the bottom floor. When it reaches the bottom, the message is cleared and the car functions normally until it again reaches the top floor.
-OR-
Scenario C: The car runs normally until it reaches the bottom floor. Then the BFD/TFD error message flashes and the car goes to the top. After it gets there, the message is cleared and the car runs normally until it again reaches the bottom floor.

WHAT TO DO FOR SCENARIO A:

A Bottom Floor Demand should be cleared when all of the following conditions are met:

1. The car is at the bottom and the Down Slow Down (DSD) input to the controller is OFF.
2. The Door Zone (DZ) input to the controller is $O N$.
3. The Door Lock (DLK) input to the controller is $O N$.

Look up the DSD, DZ and DLK signals in the computer memory (see Section 5.3.7 for an explanation). When the car is at the bottom floor with the doors locked, the correct values for these signals in the computer memory are as follows:
DSD $=0(\mathrm{OFF})$
$\mathrm{DZ}=1(\mathrm{ON})$
$\mathrm{DLK}=1(\mathrm{ON})$

If there is a different value for any of the 3 signals, check the wiring associated with that particular signal.

For example, if the DSD signal is equal to $1(\mathrm{ON})$ in the computer memory, inspect the DSD input wiring, including the Down Slow Down limit switch. The Down Slow Down switch contacts should be open when the car is at the bottom.

WHAT TO DO FOR SCENARIO B: In this situation, the USD input is usually the problem. Look at the USD signal in the computer memory (Address 2E, Position 2). USD should be ON except when the car is at the top; then it should be OFF. If the signal is not following this rule, then inspect the wiring associated with the USD input, including the Up Slow Down limit switch. The Up Slow Down switch contacts should be open when the car is at the top.

WHAT TO DO FOR SCENARIO C: In this situation, the DSD input is usually the problem. Look at the DSD signal in the computer memory (Address 2E, Position 6). DSD should be ON except when the car is at the bottom; then it should be OFF. If the signal is not following this rule, then inspect the wiring associated with the DSD input, including the Down Slow Down limit switch. The Down Slow Down switch contacts should be open when the car is at the bottom.
5.3.8.2 PROBLEMS WITH CALLS - See Section 6.3, for Call Logic and Troubleshooting of call circuits.
5.3.8.3 PROBLEMS WITH DOORS - See Section 6.2, which explains how to use computer memory to solve door problems.

5.3.9 SETTING PARAMETERS (OPTIONS) TO DEFAULT VALUES

There are occasions when it is necessary to set the parameters (options) to their default values. Setting the parameters to their default values is usually required when:

- The MC-PCA and/or MC-PA software is changed (EPROMS changed), e.g. MC-PCA software changed from version 5.02.xxxx to version 5.03.xxxx.
- RAM memory becomes corrupted. This sometimes happens due to lightening.
- Changes to Communication Port settings on the MC-PCA require that the MC-PA parameters be set to their default values.

To set the MC-PCA parameters to their default values:

1. Place the car on Machine Room Inspection.
2. Place function switches F1, F3, F5 and F7 in the On (up) position.
3. Press all four pushbuttons ($\mathbf{N}, \mathbf{S}, \boldsymbol{+},-)$ at the same time.
4. Using the settings shown in Appendix A, Original Programmed Values and the Record of Changes, reprogram the values that are different from the default values.

To set the MC-PA parameters to their default values:

1. Place function switches $\mathbf{A 1}, \mathbf{A} \mathbf{3}, \mathbf{A} 5$ and $\mathbf{A} \mathbf{7}$ in the $\mathbf{O n}$ (up) position.
2. Press the Reset button on the MC-PA board.
3. Keep function switches A1, A3, A5 and A7 in the On (up) position for about 30 seconds or until the CRT terminal reinitializes.
4. If you have a CRT terminal, verify that parameters are correct (security and/or CMS parameters must be reprogrammed).

5.4 PROGRAM MODE

This section will explain how to use Program mode. Enter Program mode by moving the F1 switch on the computer board to the up position. Program mode can be used to program the controller to meet the requirements of the elevator such as, the selection of stops and fire floors, or changing timer values and selecting options such as nudging. The PHC controller has already been programmed at

FUNCTION SWITCHES
F8 F7 F6 F5 F4 F3 F2 F1

Program mode MCE. Usually, the controller does not have to be programmed during the initial installation. Program mode can be used later to modify the elevator operation.

Refer to the Programming Record in the Job Prints for a list of the options and values programmed into the controller at MCE. If you choose, you may copy these values into the space provided in Appendix A.

NOTE: If any changes are made using Program mode, record them in writing for future reference (use Appendix A).

5.4.1 GENERAL DESCRIPTION OF PROGRAM MODE

The car must be on Inspection before Program mode can be used. Messages will appear on the computer board display. Use the \boldsymbol{N} and \boldsymbol{S} pushbuttons below the display to find and select options and to change values. The next several subsections describe in detail how to use Program mode.
5.4.1.1 VIEWING MENUS ON THE LCD DISPLAY - All of the programmable options and features are divided into menus. The following is a list of all of the menus:

- Basic Features Menu
- Gongs/Lanterns Menu
- Fire Service Menu
- Spare Inputs Menu
- Door Operation Menu
- Spare Outputs Menu
- Timer Menu
- Extra Features Menu

For each menu, there is a Menu Message on the display. To look at these Menu Messages, enter Program mode by moving the F1 switch to the up position. The Start Message

PROGRAM MODE
PRESS N TO BEGIN

Press the \boldsymbol{N} pushbutton, and release it.

The first Menu Message will appear:

```
* BASIC FEATURES *
* MENU
```

* FIRE SERVICE * Press th
appear:

Hold down the \boldsymbol{N} pushbutton, each Menu Message will appear, one at a time. Finally, the Start Message will appear again.
5.4.1.2 VIEWING OPTIONS WITHIN A MENU - The options can be viewed inside a particular menu by pressing the S pushbutton when the Menu Message appears on the display. For example, to look at the options in the Door Operation Menu, first press the \boldsymbol{N} pushbutton until the Door Operation Menu Message appears:

Press the \boldsymbol{S} pushbutton. The following display will appear:

NUDGING? YES

To view the next option, press the \boldsymbol{N} pushbutton. Hold down the \boldsymbol{N} pushbutton to scroll through the options. Eventually the Menu Message will reappear, or to return directly to the Menu Message while the options are displayed, press the \boldsymbol{N} and ' + ' pushbuttons at the same time. Press the \boldsymbol{S} pushbutton to see the options for that same menu again, or press the \boldsymbol{N} pushbutton to go on to the next menu.
5.4.1.3 CHANGING A VALUE - For each option that appears, the value can be changed by pressing the S pushbutton. While in the Timer, Spare Inputs and Spare Outputs menus, pressing and holding the Spushbutton for five seconds causes the display to scroll through the values at a faster rate. Also, in those same menus, pressing the \boldsymbol{S} and '-' pushbuttons at the same time will cause the display to scroll backwards and pressing the \boldsymbol{S} and ' + ' pushbuttons at the same will reset the option to NOT USED. To return directly to the Menu Message while the values or options are displayed, press the \boldsymbol{N} and '+' pushbuttons at the same time.

Going back to the previous example in which the Nudging option was on the display:

Pressing the \boldsymbol{S} pushbutton to changes Nudging to NO:

NUDGING? YES

5.4.1.4 SAVING THE NEW VALUES - Whenever options or values are changed in Program mode, this information must be saved in the computer's memory. When the changes are
 complete, press the \boldsymbol{N} pushbutton until the following message appears:

Press the Spushbutton to save the changes and the following display will appear:

SAVE COMPLETE:
$\mathrm{N}=$ CONTINUE
Now press the \boldsymbol{N} pushbutton, and the Start Message will appear again. When programming is complete, move the F1 switch back to the down position.

NOTE: If the values have not been saved, they will be lost when F1 is switched back to OFF (down) position. Make sure to keep an account of saved changes on the record provided in Appendix A.
5.4.1.5 RESTORING ORIGINAL VALUES - When using Program mode, if some values have been changed, but then you decide to go back to the old values, exit Program mode without saving the changes. Move the F1 switch back to the down position and the original values will be restored.
5.4.1.6 STEP-BY-STEP EXAMPLE - Table 5.6 is a step-by-step example of using Program mode. In this example, the Fire Phase 1 Alternate floor will be changed. Similar steps can be taken to change any option.

TABLE 5.6 Using the Program Mode

STEPS TO TAKE	DISPLAY MENUS AND SUB-MENUS		SECTION of MANUAL
Put car on Inspection	D INSPECTION OP PI 8 20:1011000		
Flip F1 switch Up	PROGRAM MODE PRESS N TO BEGIN		
Press \boldsymbol{N} button for Next	*BASIC FEATURES* * MENU		5.4.2
Press \boldsymbol{N} button for Next	* FIRE SERVICE * * MENU		5.4.3
Press \boldsymbol{S} button for Select		FIRE SERVICE OPERATION? YES	5.4.3.1
Press \boldsymbol{N} button for Next		FIRE PHASE 1 MAIN FLOOR = 1	5.4.3.2
Press \boldsymbol{N} button for Next		FIRE PHASE 1 ALT. F LOOR = 2	5.4.3.3
Press \boldsymbol{S} button to select next available value. If you pass the desired value, press \mathbf{S} until the desired value appears again.		FIRE SVCE. CODE ALT. FLOOR = 3	5.4.3.3
Press \boldsymbol{N} button for Next		FIRE SVCE. CODE XXXX	5.4.3.4
Press \boldsymbol{N} button for Next		BYPASS STOP SW. ON PHASE 1? YES	5.4.3.5
Press \boldsymbol{N} button to scroll through any remaining Fire Service sub-menus.			
Press \boldsymbol{N} button for Next	${ }_{*}^{*}$ FIRE SERVICE *		
Press \boldsymbol{N} button for Next	*DOOR OPERATION* * MENU		5.4.4
Press \boldsymbol{N} button for Next	$\begin{array}{ll} \hline * & \text { TIMER } \\ * & \text { MENU } \\ \hline \end{array}$		5.4.5
Press \boldsymbol{N} button for Next	*GONGS/LANTERNS* * MENU		5.4.6
Press \boldsymbol{N} button for Next	* SPARE INPUTS * * MENU		5.4.7
Press \boldsymbol{N} button for Next	* SPARE OUTPUTS* * MENU		5.4.8
Press \boldsymbol{N} button for Next	*EXTRA FEATURES* * MENU		5.4.9
Press \boldsymbol{N} button for Next	* SAVE CHANGES?* * $\mathrm{N}=\mathrm{NO} \mathrm{S}=\mathrm{YES}$ *		
Press \boldsymbol{S} button to Save	SAVE COMPLETE: N= CONTINUE		
Press \boldsymbol{N} button for Next	PROGRAM MODE PRESS N TO BEGIN		
Flip F1 switch Down and take car off of Inspection	The new options are stored and are now in effect.		

5.4.2 BASIC FEATURE MENU OPTIONS

5.4.2.1 SIMPLEX OR DUPLEX? - The controller has been programmed at the factory for either simplex or duplex capability.

If the controller has simplex capability, it can only operate a single car as a simplex. The Simplex/Duplex option message will not appear on the display.

If the controller has duplex capability, then it can operate a single car as a simplex, or it can be connected to a second PHC controller and the 2 controllers can operate 2 cars as a duplex.

Both PHC controllers must have duplex capability for this arrangement to work. Also, the Simplex/Duplex option on each controller must be set to duplex.
5.4.2.2 OPERATION (DISPATCHING OPERATION) - For simplex operation, there are 3 dispatching operations to choose from: Selective Collective, Single Button Collective, or Single Automatic Pushbutton. Each operation is described below.

Selective Collective - Choose this operation if there is an UP and DOWN button at each landing station except for the top floor (DOWN button only) and bottom floor (UP button only) and any number of calls can be registered at one time.

Single Button Collective - Choose this operation if there is only 1 call button at each landing station and any number of calls can be registered at one time.

Single Automatic Pushbutton - Choose this operation if there is only 1 call button at each landing station and only 1 call can be registered and/or serviced at a time.

NOTE: If either Single Button Collective or Single Automatic Pushbutton operation is selected, then one of the spare output terminals should be used for an INDFRC output. This output is used to cut out the hall calls during Fire Service and Independent Service (see Section 5.4.8 for more details). Refer to the Job Prints for information on using the INDFRC output to cut out hall calls.

For duplex operation, the dispatching scheme is always Selective Collective. Therefore, the Operation option message will not appear on the display if the duplex option has been selected.
5.4.2.3 TOP LANDING SERVED? (simplex) / TOP LANDING FOR THIS CAR? (duplex) Set this option to the highest floor served by this car.
5.4.2.4 CAR DOORS ARE WALK-THRU? (simplex) / THIS CARS DOORS WALK-THRU? (duplex) - Set this option to YES if independent (walk-through) doors are served by this car.
5.4.2.5 CAR SERVES FRNT/FLR 1 ? (simplex)/THIS CAR SERVES FRNT/FLR 1 ? (duplex) Setting this option to YES indicates that this car is eligible to serve a front opening at this floor. This option will continue to be asked until the top landing is reached. Press the ' + ' pushbutton to scroll through the available landings. Press the N pushbutton for the next option.
5.4.2.6 CAR SERVES REAR/FLR 1? (simplex) / THIS CAR SERVES REAR/FLR 1? (duplex) - Setting this option to YES indicates that this car is eligible to serve a rear opening at this floor. This option will not be displayed if option 5.4.2.4 is set to NO. This option inquiry
will continue until the top landing is reached. Press the ' + ' pushbutton to scroll through the available landings. Press the N pushbutton for the next option.

For a duplex, option inquiries for 5.4.2.4 through 5.4.2.6 must be answered for both cars. Each message will ask what the other car's top landing is, if it serves rear floors, etc. Again, select YES if the other car of the duplex serves that floor and NO if the other car does not. Both controllers in a duplex need to be programmed with this information.
5.4.2.7 PARKING FLOOR - Any landing can be selected to be the parking floor. The car will go to the parking floor when it is free of call demand. In addition, there is a Parking Delay Timer that will cause a free car to wait for a short time before parking. The timer is adjustable, with a value between 0.0 minutes (no delay) and 6.0 minutes (see Section 5.4.5.10 for more details). If the parking feature is not needed, choose NONE when the Parking Floor option message is on the display. The car will stay at the last call answered.
5.4.2.8 ALT. PARKING FLOOR - This option is available only when the API input is programmed and a parking floor is set. Any landing can be selected to be the alternate parking floor. This car will go to the alternate parking floor when it is free of call demand and the API input is active.
5.4.2.9 SECONDARY PARKING FLOOR - This option is for duplex systems only. Any landing can be selected to be the secondary parking floor. The car will go to this floor when it becomes free of call demand and the other car is already parked at the first parking floor. It is acceptable to make the secondary parking floor the same as the first parking floor, if both cars are to park at the same floor. If a second parking floor is not needed, choose NONE when the Secondary Park Floor option message is on the display. Then, the first free car will go to the first parking floor, but the second car will stay at the last call answered.
5.4.2.10 LOBBY FLOOR - Any landing can be selected to be the Lobby Floor. When the car answers either a hall or car call at this floor, the doors will stay open until the Lobby Door Timer elapses (the Lobby Door Timer is adjustable, see Section 5.4.5.4). NOTE: The Lobby Floor is also used for CTL input.
5.4.2.11 CAR IDENTIFIER - This option is for duplex systems only. Its purpose is to specify which controller is assigned to car A and which controller is assigned to car B. This is primarily used for controllers that use a peripheral device such as a CRT.
5.4.2.12 NUMBER OF IOX BOARDS? - Program the number of HC-IOX boards installed in the controller (valid range is 0 to 4).
5.4.2.13 NUMBER OF I4O BOARDS? - Program the number of HC-I4O boards installed in the controller (valid range is 0 to 3).
5.4.2.14 NUMBER OF AIOX BOARDS? - Program the number of HC-AIOX boards installed in the controller (valid range is 0 or 1).

5.4.3 FIRE SERVICE MENU OPTIONS

5.4.3.1 FIRE SERVICE OPERATION? - If Fire Service operation is not required, then this option should be set to NO. Otherwise, if set to YES, the options below will appear on the LCD display.
5.4.3.2 FIRE PHASE 1 MAIN FLOOR - Any landing can be selected to be the Main Fire Return Floor for Fire Service.
5.4.3.3 FIRE PHASE 1 ALT. FLOOR - Any landing can be selected to be the Alternate Fire Return Floor for Fire Service.
5.4.3.4 FIRE SVCE. CODE - The Fire Service Operation will conform to the selected fire service code. The fourteen different codes to choose from are:

1. CHICAGO (OLD)
2. VET ADMIN (Veterans' Administration)
3. NYC RS-18
4. ANSI A17.1-89>
5. CALIF. TITLE 8
6. HAWAII
7. CSA B44-M90
8. 34 PA CODE, CH .7
9. CITY OF HOUSTON
10. AUSTRALIA
11. CITY OF DETROIT
12. MASSACHUSETTS
13. ANSI A17.1 85-88
14. CITY OF DENVER
15. CHICAGO 2001
16. A17.1-2000
5.4.3.5 FIRE PHASE I 2ND ALT. FLOOR - This option is available for Detroit Fire Code only. Any landing can be selected to be the $2^{\text {nd }}$ alternate fire return floor.
5.4.3.6 BYPASS STOP SW. ON PHASE 1? - This option was added to keep the stop switch from being bypassed on Fire Phase I. With this option set to NO, the CSB output will not come $O N$ as the car is returning on Fire Phase I.
5.4.3.7 HONEYWELL FIRE OPERATION? (YES/NO) - This option is only available if the FIRE SVCE. CODE option is set to AUSTRALIA (see section 5.4.3.4). If this option is set to YES then the Australia fire code will conform to Honeywell's requirements. If this option is set to NO then the controller will conform to standard Australia code.
5.4.3.8 NEW YORK CITY FIRE PHASE 2 AND ANSI 89? (YES/NO) - This option is only available if the FIRE SVCE. CODE option is set to ANSI A17.1 89 (see section 5.4.3.4). If this option is set to YES then the ANSI A17.1 89 Fire Code will conform to New York City Fire Code requirements when on Fire Phase 2. If this option is set to $N O$ then the controller will conform to standard ANSI A17.1 89 Fire Code.
5.4.3.9 WHITE PLAINS, NY FIRE CODE? - This option is only available if the FIRE SVCE. CODE option is set to ANSI17.1 89 (see Section 5.4.5.4). The city of White Plains requires that if fire phase one is still in effect, the car can exit fire phase two regardless of the position of the doors. Setting this option to YES will comply with this requirement.
5.4.3.10 MASS 524 CMR FIRE CODE? (YES/NO) - This option is only available if the "FIRE SVCE. CODE" option is set to "A17.1-2000". If this option is set to YES, the ASME A17.12000 fire code will conform to the Massachusetts 524 CMR requirements. If this option is set to NO, the controller will conform to the standard ASME A17.1-2000 code.

5.4.4 DOOR OPERATION MENU OPTIONS

5.4.4.1 NUDGING? - This option causes Nudging Operation to occur when the doors are prevented from closing. During Nudging Operation, the controller will turn ON the NUDG output, to signal the door operator to close the doors at a reduced speed. The NUDG output will stay $O N$ for the amount of time the Nudging Timer is set, and then cycle off for the same amount of time. This cycle will continue until the doors have become fully closed. The NUDG output can also be used to activate a buzzer. The PHE (Photo Eye) input will be ignored during nudging, if the Stuck Photo Eye Protection option has been selected (see Section 5.4.4.2). A Safety Edge or Door Open Button input will stop the doors from closing, but will not reopen the doors fully. Nudging Operation will begin when the Nudging Timer elapses. The Nudging

Timer starts when the regular door timer elapses. The Nudging Timer is adjustable, with a value between 10 and 60 seconds (see Section 5.4.5.5).
5.4.4.2 STUCK PHOTO EYE PROTECTION? - This option causes the controller to ignore the PHE (Photo Eye) input and to close the doors. The PHE input will be ignored when the Nudging Timer elapses, if the Nudging option is selected or when the Time Out of Service Timer elapses, whichever comes first. If the Nudging option is not selected, then the PHE input will be ignored when the Time Out of Service Timer elapses (see Section 5.4.5.6 for more details).

If the Stuck Photo Eye Protection option is not selected, a PHE input that is stuck $O N$ will keep the doors open indefinitely.
5.4.4.3 SEQUENTIAL DOOR OPER. (F/R)? - This option is available only if independent rear doors are present. If this option is set to YES then the front and rear doors of the car do not open at the same time. Whenever the controller receives a front and rear call to the same landing, the car will, upon reaching that landing, first open the front doors and close them, then open the rear doors and close them. The default is to open the front doors first unless the rear doors have already started to open.
5.4.4.4 CAR CALL CANCELS DOOR TIME? - If this option is selected, pressing a car call button when the doors are fully open will cause the doors to start closing. There is one exception. If the car is stopped at a floor, pressing the car call button for that same floor will not cause the doors to close, but will cause the doors to reopen if they are in the process of closing.
5.4.4.5 NUDGING DURING FIRE PH. 1? - If this option is selected, the controller will turn $O N$ the NUDG output while the doors are closing during Fire Phase 1. The NUDG output signals the door operator to close the doors at a reduced speed. This option is useful for elevators that do not have mechanical safety edges. During Fire Phase 1, all smoke sensitive reopening devices must be disabled. This includes photo eyes and other devices that use infrared beams. If there are no other reopening devices active, then the doors should be closed at reduced speed.
5.4.4.6 RETIRING CAM OPTION? - This option should be selected for elevators with retiring cams. This option affects the car only when it is sitting at a floor. Without this option, the controller will wait until the doors are closed and locked before it turns OFF the door close signal. However, if the elevator has a retiring cam, the doors will not be locked until the retiring cam is activated.

If this option is selected, the controller will turn OFF the door close signal when the doors are closed instead of waiting for the doors to be locked. More precisely, the controller will turn OFF the door close output signal (DCF) when the DCLC (Doors Closed Contact) input is ON or when the DCL (Door Close Limit) input is OFF, instead of waiting for the DLK (Door Lock) input to turn $O N$.
5.4.4.7 PRE-OPENING? - If this option is selected, the controller will begin to open the doors just before the car completely stops at a floor. More precisely, the controller will turn $O N$ the DOF (Door Open Function) output signal when the DZ (Door Zone) input turns ON. Typically, the DZ input first turns $O N$ when the car is about 3 inches away from the final stopping point. This option is not recommended for elevators that may spend an extended period of time in leveling.
5.4.4.8 MECHANICAL SAFETY EDGE? - If this option is selected, the Nudging Operation will cycle until the doors are fully closed. Otherwise, the nudging function will operate continuously to comply with code requirements where a door reopening device is not used (see Section 5.4.4.1 for more details).
5.4.4.9 NUDGING OUTPUT/BUZZER ONLY? - If this option is selected with the Nudging option, the NUDG output will be activated when the Nudging Timer elapses. However, if either the Mechanical Safety Edge or the Door Open button is activated, the doors will stop and reopen fully. If this option is not selected, the doors will simply stop under these circumstances, but will not reopen fully. This option may be useful when only a nudging buzzer is required, but the actual Nudging Operation is not needed (see Section 5.4.4.1 for more details).
5.4.4.10 D.C.B. CANCELS DOOR TIME? - When the doors are fully open, this option will cancel any pre-existing door time and cause the doors to start closing when the Door Closed button is pressed.
5.4.4.11 LEAVE DOORS OPEN ON PTI/ESS? - With this option set and either the Power Transfer (PTI) input or the Elevator Shutdown Switch (ESS) input selected and active, once the car has stopped at a floor, the doors will remain open instead of cycling closed.
5.4.4.12 NUDGING DURING FIRE PHASE 2? - If this option is selected, the controller will turn ON the NUDG output while the doors are closing during Fire Phase 2. The NUDG output signals the door operator to close the doors at reduced speed.
5.4.4.13 DIR. PREFERENCE UNTIL DLK? - This option causes the car to maintain its present direction preference until the doors are fully closed. Otherwise, the direction preference is maintained only until the door dwell time expires.
5.4.4.14 FULLY MANUAL DOORS? - Set this option to YES whenever the doors are opened and closed manually versus automatically.
5.4.4.15 CONT. D.C.B. TO CLOSE DOORS? - When this option is set to YES, the doors will remain open while the car is at a landing until the Door Close button is pressed. While the Door Close button is pressed, the doors will continue to close. If the Door Close button is released before the doors have closed fully, the door will re-open.
5.4.4.16 CONT. D.C.B. FOR FIRE PH 1? - When set to YES, the doors will remain open when the car goes on Fire Phase 1 until constant DCB forces them closed.
5.4.4.17 MOMENT. D.O.B. DOOR OPENING ? - This option is used to require the momentary pressure on the Door Open Button (DOB) to open the doors. If set to NO, momentary pressure on the DOB is not required to open the doors when the car reaches a landing. The doors open automatically in response to a call.
5.4.4.17.1 MOMENT D.O.B. FOR: (FRONT CALLS/ REAR CALLS/ BOTH CALLS) Choose whether front calls, rear calls or both calls need momentary D.O.B.

- FRONT CALLS - this option necessitates that DOB be pressed when the car responds to front door calls. Rear door calls are not affected.
- REAR CALLS - this option necessitates that DOB be pressed when the car responds to rear door calls. Front door calls are not affected.
- BOTH CALLS - this option necessitates that DOB be pressed when the car responds both front and rear door calls.
5.4.4.17.2 MOMENT D.O.B. FOR: (HALL CALLS/ CAR CALLS/ ALL CALLS)- Choose whether hall calls, car calls or all calls need momentary D.O.B.
- HALL CALLS - this option necessitates that DOB be pressed when the car responds to hall calls. Car calls are not affected.
- CAR CALLS - this option necessitates that DOB be pressed when the car responds to car calls. Hall calls are not affected.
- ALL CALLS - this option necessitates that DOB be pressed when the car responds to both hall calls and car calls.
5.4.4.18 DOORS TO OPEN IF PARKED: (NONE/FRONT/REAR/BOTH) - If set to NONE, the doors remain closed while the car is parked. When set to FRONT, REAR, or BOTH, the corresponding doors automatically open and remain open while the car is parked. This option is available only if a parking floor is programmed in the Basic Features menu. BOTH option is not available if the car is programmed for sequential door operation. See Section 5.4.4.3 for more details.
5.4.4.19 DOORS TO OPEN ON MAIN FIRE? - The choices for this option are FRONT, REAR and BOTH. This option determines which door(s) should open once the car has completed a Main Fire return (only if option 5.4.2.4 is set to YES).
5.4.4.20 DOORS TO OPEN ON ALT FIRE? - The choices for this option are FRONT, REAR and BOTH. This option determines which door(s) should open once the car has completed an Alternate Fire return (only if option 5.4.2.4 is set to YES).
5.4.4.21 LEAVE DOORS OPEN ON CTL? - When set to YES, and the CTL (car to lobby) input is active, once the car has returned to the lobby, the doors will remain open instead of cycling closed.
5.4.4.22 LIMITED DOOR RE-OPEN OPTION - Once the doors begin to close after a door dwell time has expired, if a re-opening device input (PHE or SE) is seen, this option will allow the doors to re-open as long as the re-opening device is active. Once the re-opening device is inactive, the doors will immediately begin to close again. Without this option set, in this same case, the doors will re-open fully for a short door time and then close.
5.4.4.23 REDUCE HCT WITH PHOTO EYE - This option will cause a normal hall call time to be shortened to a short door time if a photo eye input is seen.
5.4.4.24 LEAVE DOORS OPEN ON EPI - When set to YES, and EPI (Emergency Power) input is active, once the car returns to the emergency power return floor, the doors are left open instead of cycling closed.
5.4.4.25 DOORS TO OPEN IF NO DEMAND: (NONE/FRONT/REAR/BOTH) - When set to NONE, the doors remain closed when the car is at a landing with no demand. When set to FRONT, REAR, or BOTH, the corresponding doors automatically open and remain open when the car is at a landing with no demand. BOTH option is not available if the car is programmed for sequential door operation. See Section 5.4.4.3 for more details.
5.4.4.26 CONST. PRESS OP. BYPASS PHE? - This option is used to indicate if Constant Pressure Operations, such as Independent Service, Attendant Service, or if the Constant Pressure Door Close option is set to YES, should bypass the Photo Eye when the Photo Eye is active and there is a demand to close the doors and move the car. When set to YES, the car will bypass the Photo Eye and nudge the doors closed. When set to NO, the car will not bypass the Photo Eye; the doors will remain open until the Photo Eye is cleared.
5.4.4.27 DOOR TYPE IS HORIZONTAL / VERTICAL - This option is used to indicate if the doors open horizontally or vertically. When set to vertical, requires constant pressure on the door close button (DCB) to shut the doors when exiting Fire Phase 2 away from the recall floor with Fire Phase 1 active (ASME A17.1 requirement).
5.4.4.28 FRONT DOOR MECH. COUPLED? YES/ NO - Set to YES if the front car gate is mechanically coupled to the hallway doors. To satisfy A17.1-2000 code requirements, this option is used to qualify the HD Redundancy fault when the Retiring Cam Option (Section 5.4.4.6) is set to YES and this option is set to YES.
5.4.4.29 REAR DOOR MECH. COUPLED? YES/ NO - Set to YES if the rear car gate is mechanically coupled to the hallway doors. To satisfy A17.1-2000 code requirements, this option is used to qualify the HDR Redundancy fault when the Retiring Cam Option (Section 5.4.4.6) is set to YES and this option is set to YES.
5.4.4.30 PREVENT DCP TIL DOORS CLOSE? - When this option is set to YES, the DCP output will not be generated until the doors close and a demand is present. Set this option to YES when it is required that the doors be fully closed before asserting DCP, e.g., when DCP is used to power the retiring cam RC relay, DCP should be asserted only after the doors have fully closed as indicated by the DCL input.
5.4.4.31 MOMENT. D.C.B TO CLOSE DOORS? YES/NO - When this option is set to "YES" a momentary push on the door close button is required to allow the doors to close while on normal operation.
5.4.4.32 DOORS TO LATCH DOF? FRONT/REAR/BOTH/NONE - This option would maintain the Door Open Function on the selected doors continuously as long as a door closing command is absent.
5.4.4.33 DOORS TO LATCH DCF? FRONT/REAR/BOTH/NONE - This option would maintain the Door Close Function on the selected doors continuously as long as a door opening command is absent.
5.4.4.34 INV. DOOR CLOSE LIMIT? NONE/ FRONT/ REAR/ BOTH - Set this option for doors that require inverted door close limit input logic (DCL and/or DCLR). When this option is set, the DCL and/or DCLR inputs must be active when the doors are closed and inactive when the doors are open.

5.4.5 TIMER MENU OPTIONS

5.4.5.1 SHORT DOOR TIMER (Range: 0.5-120.0 Seconds) - This is the length of time the doors will stay open after being reopened by the Photo Eye, Safety Edge or Door Open button.
5.4.5.2 CAR CALL DOOR TIMER (Range: 0.5-120.0 Seconds) - This is the length of time the doors will stay open when the car stops to answer a car call.
5.4.5.3 HALL CALL DOOR TIMER (Range: 0.5-120.0 Seconds) - This is the length of time the doors will stay open when the car stops to answer a hall call.
5.4.5.4 LOBBY DOOR TIMER (Range: $\mathbf{0 . 5 - 1 2 0 . 0}$ Seconds) - This is the length of time the doors will stay open when the car stops to answer either a hall call or a car call at the Lobby Floor. The location of the Lobby Floor is programmable (see Section 5.4.2.6).
5.4.5.5 NUDGING TIMER (Range: 10-240 Seconds) - This timer is used only if the Nudging option is selected. Door Nudging Operation will begin when the Nudging Timer elapses. The Nudging Timer will start when the regular door timer elapses (see Section 5.4.4.1 for details).
5.4.5.6 TIME OUT OF SVCE. TIMER (Range: $\mathbf{1 5 - 2 4 0}$ Seconds or NONE) - This timer is used to take a car out of service when the car is held at one floor excessively when there are calls registered at other floors. The timer will start when there is a call registered at another floor. If the timer expires before the car closes its doors and begins to move, then the car will become out of service. Typically, this occurs when the doors are held open by continuous activation of the photo eye, a call button, or another reopening device. When NONE is selected, no Time Out of Service timing is performed.

When the timer expires, the Timed Out of Service Indicator on the MC-PCA-OA-2K board will turn ON. The controller will ignore the PHE (Photo Eye) input, if the Stuck Photo Eye Protection option is selected. In duplexes, the car's assigned hall calls will be assigned to the other car. When the car closes its doors and begins to move again, it will go back into Normal service.
5.4.5.7 MOTOR LIMIT TIMER (Range: 1.0-6.0 Minutes) - This timer starts whenever the controller attempts to move the car in the up direction and is reset when the car reaches its destination floor. If the timer expires before the car reaches its destination, the controller stops trying to move the car up, to protect the motor. The car will then lower to the bottom floor and shutdown. The Motor/Valve Limit Timer Indicator on the MC-PCA-OA-2K board will turn ON.
5.4.5.8 VALVE LIMIT TIMER (Range: 1.0-6.0 Minutes) - This timer starts whenever the controller attempts to move the car down, and is reset when the car reaches its destination floor. If the timer expires before the car reaches its destination, the controller will stop trying to move the car, in order to protect the valves. The Motor/Valve Limit Timer Indicator on the MC-PCA-OA-2K board will turn ON.
5.4.5.9 DOOR HOLD INPUT TIMER (Range: 0-240 Seconds) - This timer will be used only if there is a DHLD (Door Hold) input on the controller (see Section 5.4.7). Usually, a Door Hold Open button will be connected to this input. This timer determines the amount of time that the doors will stay open when the door hold open button is pressed. The timer will be canceled and the doors will begin to close, if either the Door Close button or a Car Call button is pressed. If a Door Hold Key switch (instead of a button) is connected to the DHLD input, this timer value should be set to 0 , so that the doors will close when the switch is turned to the OFF position.
5.4.5.10 PARKING DELAY TIMER (Range: 0.0-6.0 Minutes) - This timer is used only if a parking floor is selected (see Sections 5.4.2.7 and 5.4.2.8). The timer starts when the car is free of call demand. The car will not park until the timer elapses.
5.4.5.11 FAN/LIGHT OUTPUT TIMER (Range : 1.0-10.0 Minutes) - Used with the FLO output. This timer sets the amount of time that will pass before the FLO output will be activated. The time will start when the car becomes inactive. The FLO output should be connected to a relay that when activated, will turn OFF the fan and light within the car.
5.4.5.12 HOSPITAL EMERG. TIMER (Range : 1.0-10.0 Minutes) - This timer sets the amount of time that the car will remain at the hospital emergency floor with the doors open before automatically returning to normal service (refer to Section 5.4.9.15).
5.4.5.13 DOOR OPEN PROTECTION TIMER (Range 8-30 Seconds) - This timer determines how long the door operator will attempt to open the doors. If DOL does not go low within this time, the doors will then begin to close.
5.4.5.14 CTL DOOR OPEN TIMER (Range: 2.0-60.0 seconds) - This timer is used to indicate how long the doors should remain open after lowering to the lobby floor when the CTL spare input is activated.
5.4.5.15 DOOR BUZZER TIMER (Range: 0-30 Seconds) - This timer determines the length of time the door buzzer sounds before the doors are automatically closed.

5.4.6 GONGS/LANTERNS MENU OPTIONS

5.4.6.1 MOUNTED IN HALL OR CAR? - This option determines when the lanterns and gongs will be activated, as the car slows into the floor for hall mounted fixtures or after the door lock opens for car mounted fixtures. If both types of lanterns will be used, then the Hall option is recommended.
5.4.6.2 DOUBLE STRIKE ON DOWN? - This option causes a double strike of the lanterns and gongs, if the direction preference of the car is down.
5.4.6.3 PFG ENABLE BUTTON? (Passing Floor Gong Enable Button) - If this option is selected, the Passing Floor Gong will only be operative when initiated by a momentary pressure pushbutton. Once initiated, the Passing Floor Gong will operate for the current direction of travel but will be rendered inoperative when the car reverses direction. The PFGE spare input (see Section 5.4.7) should also be selected if this option is turned ON.
5.4.6.4 EGRESS FLOOR ARRIVAL GONG? / MAIN EGRESS FLOOR \# - To program this option (Michigan Code), set one of the spare outputs to EFG. Then, set EGRESS FLOOR ARRIVAL GONG? to $N O$ (no gong) or press \boldsymbol{S} to select the floor number where the gong should activate (after the door lock opens). If \boldsymbol{S} is pressed, the display will read MAIN EGRESS FLOOR \#1. Press \boldsymbol{S} until the desired floor number is displayed.

5.4.7 SPARE INPUTS MENU OPTIONS

There is 1 additional or spare input terminal available on the Relay board, marked SP1. There are also 8 spare input terminals on the HC-IOX board(s) and 16 spare input terminals on the HC-I4O board(s). The maximum number of terminals possible is 49 . Any of these spare inputs (SP1, SP2, ...) may be used for any of the input signals listed below.

	SPARE INPUTS MENU OPTIONS
2AB	Monitoring input for the 2AB relay coil.

SPARE INPUTS MENU OPTIONS	
AXR	Auxiliary Reset Input - Usually connected to a pushbutton on a controller to reset redundancy error conditions.
BAB	Monitoring input for the BAB relay coil.
BSI	Building Security Input - This input is used to activate MCE Security when the Master Software Key (in the Extra Features Menu) is set to ENABLED.
CCC	Car Calls Cancel Input - Activation of this input will unconditionally cancel car calls. Because this input has no logical qualification in the software, it is highly suggested that necessary qualification be done in external circuitry (e.g., disable the signal feeding this input when on fire phase II).
CNP	Contactor Proof Input - This input is used for redundancy checking. It monitors the main power contactors. If any of these relays fail to open in the intended manner, the CFLT relay will pick, dropping the safety relays.
CTF	Car to floor Input - This input is used to return the car to a previously selected floor. The return floor is selected using the parameter CAR TO FLOOR RETURN FLOOR in the EXTRA FEATURES MENU. When activated, this input will cause the car to immediately become non-responsive to hall calls, and will prevent the registration of new car calls. The car will be allowed to answer all car calls registered prior to activation of the CTF input. Once all car calls have been answered, the car will travel to the return floor, perform a door operation, and will be removed from service.
CTL	Car-to-Lobby Input - When activated, this input will cause the car to immediately become non-responsive to hall calls, and will prevent the registration of new call calls. The car will be allowed to answer all car calls registered prior to activation of the CTL input. Once all car calls have been answered, the car will travel to the lobby landing, perform a door operation, and will be removed from service.
CTST	Capture for Test Input.
DCL	Door Close Limit Input - Breaks when the car door is approximately 1 inch from being closed. DCL input will be low once the doors fully close. Moving the door approximately 1 inch will reapply power to the DCL input due to the switch making up. Needed for CSA code with door lock bypass.
DCLC	Doors Closed Contact Input.
DHLD	Door Hold Input for Normal Service (not for Fire Service.) A Door Hold button or key switch can be connected to this input (see Section 5.4.5.9 for more details).
DHLDR	DHLD for Rear Doors.
DLI	Dispatch Load Input - A load weigher device can be connected to this input. When the input is activated, the door dwell time will be eliminated when the elevator has an up direction at the Lobby Floor.
DNI	Down Input (Attendant Service).
DPM	Front Door Position Monitoring - Makes when the car door is approximately 1 inch from being closed. DPM input is active once the door fully closes. Moving the door approximately 1 inch removes power from the DPM input due to the switch opening.
DPMR	Rear Door Position Monitoring - Makes when the car door is approximately 1 inch from being closed. DPMR input will be active once the door fully closes. Moving the door approximately 1 inch will remove power from the DPMR input due to the switch breaking.
DSTI	Door Stop Input.
DSTIR	DSTI for rear doors.
ECRN	Emergency Car Freeze Input - This input is used with EMP-OVL product and will cause the car to freeze, allowing others cars to return on emergency power.
EMSC	Emergency Medical Switch Car.
EMSH	Emergency Medical Switch Hall.
EPI	Emergency Power Input (see Section 5.4.9.4 for more details).

SPARE INPUTS MENU OPTIONS	
EPR	Emergency Power Return Input - This input is used with the EMP-OVL product and allows the car to return to the lobby landing on emergency power.
EPRUN	Emergency Power Run Input.
EPSTP	Emergency Power Stop Input.
ERU	Emergency Return Unit Input
ESS	Elevator Shutdown Input - When this input is activated, the car stops at the next landing in the direction of travel, cycles the doors and shuts down.
EXMLT	External Motor Limit Timer
EXMLTC	Complimented EXMLT Input. This input provides reverse logic for the EXMLT function. EXMLT operation is initiated when this input goes low.
FCCC	Fire Phase 2 Call Cancel Button Input.
FCHLD	Fire Phase 2 Switch HOLD Position Input.
FCOFF	Fire Phase 2 Switch OFF Position Input.
FRAA	Fire Phase 1 Alternate (2nd alternate) Input.
FRAON	Fire Phase 1 Alternate Switch ON Position Input.
FRBYP	Fire Phase 1 Switch BYPASS Position Input.
FRON	Fire Phase 1 Switch ON Position Input.
FRON2	Fire Phase 1 Switch ON Position Input (additional input - same as FRON).
FRSA	Alternate Fire Service - normally active input. When this input goes low, Alternate Fire Service operation is initiated and the FWL output (Fire Warning Light) will flash.
FRSM	Main Fire Service - This is a normally active input. When this input goes low, Main Fire Service operation is initiated and the FWL output (Fire Warning Light) will flash.
GS	Gate Switch Input - Makes up when the car door is approximately 1 inch from fully closed. With the car door closed, there should be power on the GS input.
GSR	Gate Switch Rear Input.
HD	Hoistway Door Contact - Monitors the state of the contacts in the landing door lock string. Power will be present on the HD input when all landing doors are closed and locked.
HDR	Hoistway Door Contact Rear - HD for rear doors.
HEATD	Heat Detector Input.
HLI	Heavy Load Input - A load weigher device can be connected to this input. When the input is activated, the controller will not answer hall calls.
HML	Home Landing Input - This input is used with the primary parking feature and will determine whether the car will park or not.
HOSP	Hospital Emergency Operation Input.
INA	Monitoring input for the INAX relay coil.
IRCOF	Front Infra Red Cutout. - This is a normally active input. When this input goes low, the infra red detector signal is ignored for the front door only and the door will always close at reduced torque and speed, i.e., nudge closed unless the door requires a constant door close button signal to close. In this case the door will close at full speed.
IRCOR	Rear Infra Red Cutout - This is a normally active input. When this input goes low, the infra red detector signal is ignored for the rear door only and the door will always close at reduced torque and speed, i.e., nudge closed unless the door requires a constant door close button signal to close. In this case the door will close at full speed.
LLI	Light Load Input - A load weigher device can be connected to this input (see Section 5.4.9.5 for more details).

SPARE INPUTS MENU OPTIONS	
LOS	Low Oil Switch - (PHC controllers) - This input is connected to a level switch in the oil reservoir. Once activated, the car will immediately lower to the bottom landing and cycle the doors. To clear this condition, the car must be put on inspection and then back into normal operation, or the RESET button must be pressed.
LWB	Load Weigher Bypass - This input is used to bypass the load weigher inputs (LLI, HLI, OVL and DLI).
NSI	Non-Stop Input (Attendant Service)
OVL	Overload Input.
OVL2	Overload 2 Input. While on Fire Phase II, when the car is stopped at a landing with the doors open, activation of this input will hold the doors open until the overload condition is cleared by deactivating the input (only used for the ANSI A17.1-2000 fire code).
PFGE	Passing Floor Gong Enable Input (see Section 5.4.6.3).
PSS	Pressure Switch Input. When activated (low), this input will cause the elevator to stop immediately.
PTI	Power Transfer Input - When this input is activated, it causes the car to stop at the next landing in the direction of travel, open the doors and shut down. This input is typically used with Emergency Power when transferring from normal power to emergency power (testing) or emergency power to normal power.
R2AB	Redundancy monitoring input from the 2AB relay contact.
$\begin{aligned} & \text { R5, R4, } \\ & \text { R3, R2 } \end{aligned}$	Floor Encoding Inputs - These inputs are required for jobs with absolute floor encoding. See Section 5.4.9.2 for more information about floor encoding inputs.
RBAB	Redundancy monitoring input for the BAB relay contact.
RDEL2 ASME A17. 1 2000	Redundancy Delta-Contactor For Starter \#2 - Validates the Delta-Contactor has dropped. This input should be programmed in a multi-starter system with two or more starters where the second starter is configured for Wye-Delta starting.
RDEL3 ASME A17.1- 2000	Redundancy Delta-Contactor For Starter \#3 - Validates the Delta-Contactor has dropped. This input should be programmed in a multi-starter system with three starters where the third starter is configured for Wye-Delta starting.
RDFV	Redundancy Down Fast Valve. This input should always be active unless the down fast valve is powered.
RDSV	Redundancy Down Slow Valve. This input should always be active unless the down slow valve is powered.
REO	Re-Open Input.
RINAX	Redundancy monitoring input for the INAX relay contact
$\begin{aligned} & \text { RM2 } \\ & \begin{array}{l} \text { ASME A17.1- } \\ 2000 \end{array} \end{aligned}$	Redundancy M-Contactor For Starter \#2 - Validates the M-Contactor has dropped. This input should be programmed in a multi-starter system with two or more starters where the Second starter is configured to utilize an M-Contactor. Not to be used with a Solid State Starter.
$\begin{aligned} & \text { RM3 } \\ & \text { ASME A17.1- } \\ & \text { 2000 } \end{aligned}$	Redundancy M-Contactor For Starter \#3 - Validates the M-Contactor has dropped. This input should be programmed in a multi-starter system with three starters where the third starter is configured to utilize an M-Contactor. Not to be used with a Solid State Starting.
$\begin{aligned} & \text { RPLT } \\ & \text { ASME A17.1- } \\ & \text { 2000 } \end{aligned}$	Redundant Pilot Relay - Indicates the status of the PLT Relay. Used only for multi starter systems.
RSYNC	Redundancy monitoring input for the SYNC relay contact.
RUFV	Redundancy Up Fast Valve. This input should always be active unless the up fast valve is powered.
RUSV	Redundancy Up Slow Valve. This input should always be active unless the up slow valve is powered.

SPARE INPUTS MENU OPTIONS	
RWYE2 ASME A17.1- 2000	Redundancy Wye-Contactor For Starter \#2 - Validates the Wye-Contactor has dropped. This input should be programmed in a multi-starter system with two or more starters where the second starter is configured to utilize Wye-Delta or Across The Line starting only.
RWYE3 ASME A17.1- 2000	Redundancy Wye-Contactor For Starter \#3 - Validates the Wye-Contactor has dropped. This input should be programmed in a multi-starter system with three starters where the third starter is configured to utilize Wye-Delta or Across The Line starting only.
SAB	Sabbath Operation Input. This input is used to select Sabbath Operation. This mode will move the car through the hoistway, stopping at landings that are programmed in the Extra Features Menu.
$\mathrm{SE}_{\substack{\text { ASME A17.1- } \\ \text { 20NO }}}$	Safety Edge - Activating this input will open the doors. The doors will remain open as long as this input is active.
SIMP	Simplex Input - Activation of this input will cause the car to behave as a simplex. As a simplex, the car will respond to hall calls registered on its own call circuitry (it will not accept hall calls assigned to it by another controller connected to it) and will perform its own parking function (independent of the other controller).
STARTIN	Start Input - The STARTIN input is used for the START position of the three position fire phase two switch for Australian jobs. When activated, it will cause the front and rear doors to close. The car will not proceed to answer car calls during fire phase two until the STARTIN input has been activated.
SYNCI	Synchronization Input - (PHC controllers) - Momentary activation of this input will initiate the jack synchronization function. This function is intended to equalize hydraulic pressure in systems that utilize more than one piston to move the car(generally two). When appropriate (the car is idle), the car will be taken to the bottom landing. The down normal limit switch is bypassed by activation of a relay connected to the SYNC output, and the car is moved at slow speed in the down direction. The down slow valve circuits are energized for 30 seconds to ensure that the car has been lowered all the way to the buffer. Once this timer elapses the car is moved back up to the bottom landing.
TEST	TEST Switch Input. This input monitors the TEST/NORM Switch located on the Relay Board to differentiate between Test and Independent Operation. This input is normally high and will go low when the switch is placed in the Test position.
UPI	Up Input (Attendant Service).
UNLS ASME A17.1- 2000	Up Normal Limit Switch - This input indicates the actual status of the Up Normal Limit Switch.
UTS1 ASME A17.1- 2000	Motor \#1 Up To Speed - Up to speed indication for the first motor. This input should be programmed only in a system where the first starter is configured to utilize Solid State starting.
UTS2 ASME A17.1- 2000	Motor \#2 Up To Speed - Up to speed indication for the second motor. This input should be programmed only in a multi-starter system with two or more starters where the second starter is configured to utilize Solid State starting.
UTS3 ASME A17.1- 2000	Motor \#3 Up To Speed - Up to speed indication for the third motor. This input should be programmed only in a multi-starter system with three starters where the third starter is configured to utilize Solid State starting.
VCI	Viscosity Control Input.
WLD	Emergency Dispatch Input.

5.4.8 SPARE OUTPUTS MENU OPTIONS

There are 8 spare output terminals on an HC-IOX board. The maximum number of spare outputs possible is 32,8 on each HC-IOX board. Any of these spare outputs may be used for any of the output signals listed below.

SPARE OUTPUTS MENU OPTIONS	
900	Car Call Cancellation Output - This output is generated at the time of registration of a car call. This output is used to comply with specific handicap codes (barrier-free codes) that require an audible acknowledgment of car call registration
ABZ	Attendant Service Buzzer Output.
CCDE	Car Call Disconnect Enable Output - This output comes $O N$ when the car calls are canceled during PHE anti-nuisance operation
CCT	Car Call Time Flag Output - This flag is activated upon normal response and cancellation of a car call, and remains active until the car call door dwell time elapses or is canceled.
CD	Car Done on Emergency Power Output - This output is active when the car has finished returning on emergency power or when it has been determined that the car cannot lower.
CFLT	This output is currently used for Canadian Standards Association (CSA) code only. If this is the applicable code for the installation, please refer to the Compliance Report included with the job.
CGED	Car Gong Enable Down Output.
CGEDR	CGED for rear doors Output.
CGEU	Car Gong Enable Up Output.
CGEUR	CGEU for rear doors Output.
CGF	Car Generated Fault Output.
CHBPO	This output is active whenever a door is being bypassed (car gate or hoistway door for both the front and rear sides).
CSB	Car Stop Switch Bypass Output.
CSEO	Code Sequence Enable Output. Formerly called SCE (Security Code Enable). This output will be ON during the time a security code is being entered to register a car call while on MCE's Standard Security.
CSR	Car Selected to Run Output - This output is generated when the car is selected to run on emergency power phase 2 (via the AUTO or EPRUN input).
CTLDOT	Car-to-Lobby Door Open Timer Output - This output is generated upon completion of the car to lobby function (the car has returned to the lobby landing, the doors have opened, and the CTL door timer has expired).
DBZF	Front Door Buzzer - Prior to automatic closing of the front doors, this output will be active for the length of time determined by the Door Buzzer Timer.
DBZR	Rear Door Buzzer - Prior to automatic closing of the rear doors, this output will be active for the length of time determined by the Door Buzzer Timer.
DEL2 ASME A17.1- 2000	Delta output for Starter \#2 - Starter control signal for the second starter. This output should always be programmed in a multi-starter system with two or more starters.
DEL3 ASME A17.1- 2000	Delta output for Starter \#3 - Starter control signal for the third starter. This output should always be programmed in a multi-starter system with three starters.
DHEND	Door Hold End Output. This output will turn ON five seconds prior to when the Door Hold Timer expires.
DHENDR	Door Hold End Rear Output. This output will turn ON five seconds prior to when the Door Hold Rear Timer expires.

SPARE OUTPUTS MENU OPTIONS	
DHO	Door Hold Output - This output indicates that the doors are being held open by the door hold input function (the DHLDI input is active, or the timer associated with the door hold function has not yet elapsed).
DLOB	Door Left Open Bell Output.
DNO	Down output (Attendant Service).
D01,	DO2, DO4, DO8, DO16, D032 Binary coded P.I. outputs for digital P.I. devices.
DSH	Door Time Shortening Output (intermediate) - This output is generated whenever a destination car call button is pressed (this action causes the shortening of the door dwell time if the doors are fully open).
DSHT	Door Time Shortening Front Output (final) - This output is generated if either a destination car call button is pressed, or if the door close button for the front doors is pressed
DSHTR	Door Time Shortening Front Output (rear) - This output is generated if either a destination car call button is pressed, or if the door close button for the rear doors is pressed.
ECRN	Emergency Power Car Run Output - This output is associated with the emergency power logic. Activation of this output indicates that the car is being prevented from running by the emergency power operation logic.
EFG	Egress Floor Gong Output.
EMSB	Emergency Medical Service Buzzer Output
EMSIC	Emergency Medical Service Indicator Car Output.
EMSIH	Emergency Medical Service Indicator Hall Output.
EP1	Emergency Power Phase 1 Output - This output is generated when the system is in the first phase of emergency power (the sequential lowering phase).
EP2	Emergency Power Phase 2 Output- This output is generated when the system is in the second phase of emergency power (the normal running of a car on emergency power generators).
FIR1	Fire Service Phase I output - This output is activated during Fire Service Phase I operation.
FLASH	Flash output - This output turns ON and OFF at 0.5 second intervals.
FLO	Fan/Light Operation Output - This output is used to turn OFF the fan and the light within the car. The output is usually OFF. It is turned ON after the Fan/Light Timer elapses. The timing starts when the car becomes inactive.
FRC	Fire Service Phase 2 Output.
FRM	Fire Service Phase 1 Output.
FSA	Fire Service Alternate Output.
FSM	Fire Service Main Output.
FSO	Fire Service On Output.
FSVC	True Fire Service Output. This input is used to indicate when the car is on Fire Service Phase One or Two.
FWL	Fire Warning Light Output - This output is used to indicate when the car is on Fire Phase 1 or 2 . It will flash if the Machine Room or Hoistway fire sensor is active.
HCP	Hall call pushed output - This output is active whenever a hall call button is pressed. It is only activated for the amount of time that the button is being pressed.
HCR	Hall Call Reject Output.
HDSC	Heat Detector Shutdown Complete Output.
HLW	Heavy Load Weigher Output - This output will be generated when the car is heavy loaded, shown by the HLI input (see Section 5.4.7).

SPARE OUTPUTS MENU OPTIONS	
INDFRC	Independent Service/Fire Service Phase 2 Output - This output is needed for all elevators with either Single Button Collective or Single Automatic Pushbutton Operation (see Section 5.4.2.2). This output will be used to cut out hall calls during Fire Service and Independent Service.
ISRT	In Service and Running Output. This output reflects the car's ability to respond to hall calls(the ISRT status). ISRT is active when the car's status is such that it can answer hall calls.
ISV	In Service Output.
IUL	In Use Light output - This output activates when the car is in use, e.g., the car is in motion or the doors are open.
LLW	Light Load Weigher Output - This output will be generated when the LLI input is activated and the required number of car calls have been registered (see Section 5.4.9.5 for more details).
$\begin{array}{\|l\|} \hline \text { M2 } \\ \text { ASME A17.1- } \\ 2000 \end{array}$	M output for Starter \#2 - Starter control signal for the second starter. This output should always be programmed in a multi-starter system with two or more starters.
$\begin{aligned} & \text { M3 } \\ & \text { ASME A17.1- } \end{aligned}$ 2000	M output for Starter \#3 - Starter control signal for the third starter. This output should always be programmed in a multi-starter system with three starters.
MISV	Mechanically In Service Output.
MLT	Motor Limit Timer Elapsed Output
MLTP	Motor Limit Timer Elapsed Output (not activated by EXMLT).
NCD	Car Not Done with Emergency Power Return Output - This output may only be used if the elevator has Emergency Power Operation (see Section 5.4.9.4).
OFR	One Floor Run Output - This output is generated when the car initiates a run and remains active until the car encounters the first door zone in its movement (the output is active while traversing the first floor height in its direction of travel).
OFRP	One Floor Run Programmable. This output will be active while making one-floor runs between adjacent floors designated in the Extra Features Menu.
OFRT	One Floor Run Terminal. This output will be active when the car is making a one-floor run toward a terminal landing (in the down direction from the second to the bottom landing or in the up direction from the second highest landing to the top landing.) OFRT will have a redundancy monitoring input (ROFRT) required for hydros which are A17.1-2000 compliant.
OLW	Overloaded Car Threshold Output - This output is set when the threshold value considered to be unsafe to move the elevator is reached. When this threshold is exceeded, the car will remain at the floor with doors open.
PH1	Fire Service Phase 1 Return Complete Output - This output is most often used as a signal to activate the machine room sprinklers.
PRIFLG	Priority Service Output - This is to indicate to the emergency power overlay which car should be selected to run if it is on emergency/priority service.
SEC	Security Code Incorrect - When the building's elevator security is on, this output will turn on for five seconds when an incorrect security code is entered.
SIMPO	Simplex Output - This output comes on when the SIMP input is activated or when Simplex Operation is chosen through KCE (if available).

	SPARE OUTPUTS MENU OPTIONS				
SYNC	Synchronization Output - (PHC controllers) - This output is used to bypass the down normal limit switch to allow the car to be moved to the buffer at leveling speed. The computer generates the down direction output (DNDD) to move the car in the down direction. This output will be generated for 10 seconds to allow the car to move completely onto the buffer. Once this time elapses, the computer will generate the up direction output to move the car in the up direction at leveling speed, until the car reaches the bottom landing dead zone. At this time the up direction travel is initiated and the SYNC output is turned OFF, removing the bypass around the down normal limit switch.				
TOS	Time Out of Service Output.	$	$	Up Output (Attendant Service).	
:---	:---				
UPO	Up Valve Enable - Up valve control signal. Activates when all motors are up to speed. This output should always be programmed in a multi-starter system.				
VEU ASME A17.1-2000	Wildop Indication Output - This output is generated if the car is in emergency dispatch mode of operation (i.e., if the hall call bus fuse is blown and emergency dispatching is activated).				
WLDI					
WYE2 ASME A17.1-2000	Whe output for Starter \#2 - Starter control signal for the second starter. This output should alway be programmed in a multi-starter system with two or more starters.				
WYE3 ASME A17.1-2000	Wye output for Starter \#3 - Starter control signal for the third starter. This output should always be programmed in a multi-starter system with three starters.				
XPI1 - XPI7	Auxiliary Position Indicators 1 thru 7. These outputs behave identically to the standard PI1 - Pl7 outputs except that the XPI1 - XPI7 outputs are disabled on Inspection or during Fire Service Phase I and II.				
XSDA	Auxiliary Supervisory Down Arrow - This output behaves identically to the standard SDA output except that the XSDA output is disabled on Inspection and during Fire Service Phase I and II.				
XSUA	Auxiliary Supervisory Up Arrow - This output behaves identically to the standard SUA output except that the XSUA output is disabled on Inspection and during Fire Service Phase I and II.				
ZADJ	Zero Adjust - This output is used to cause the analog load weigher to perform its zero adjust procedure. The output is generated once every 31 hours or whenever the car is idle at the bottom floor for 30 seconds.				

5.4.9 EXTRA FEATURES MENU OPTIONS

5.4.9.1 PI OUTPUT TYPE - Choose either 1 WIRE PER FLOOR or BINARY-CODED PIs, depending on the inputs required by the P.I. device itself.
5.4.9.2 FLOOR ENCODING INPUTS? - If this option is selected, whenever the car is in a door zone the computer checks the floor code inputs and corrects the P.I., if necessary. The code inputs are provided by the landing system (refer to the Job Prints). Refer to R4, R3, R2 in Section 5.4.7.
5.4.9.3 ENCODE ALL FLOORS? - This option is only available when the Floor Encoding option is programmed to YES. This option indicates at what landing the Absolute Floor Encoding values begin. When set to YES, then every landing must have AFE code values, including the terminal landings. When set to NO, then only intermediate landings must have AFE code values.
5.4.9.4 EMERGENCY POWER OPERATION? / EMERGENCY POWER RETURN FLOOR If this option is selected, the controller will put the elevator into Emergency Power Operation when the controller receives the Emergency Power Input (EPI) signal. During Phase 1 of Emergency Power Operation, the car will be moved to the emergency power return floor. In a duplex controller, each car will be moved to the emergency power return floor, one at a time. During Phase 2 of Emergency Power Operation, if the car's Emergency Power Run (EPRUN) input is activated, the car will run normally. Otherwise, the car will remain at the emergency power return floor and will not respond to any calls.

For a simplex controller, the car's EPRUN input is sometimes connected to a switch, so that the input can be turned $O N$ and $O F F$. For a duplex controller, both cars' EPRUN inputs are usually connected to a Run Selection switch. The position of this switch determines which car will run during Phase 2 of Emergency Power Operation.

Often there is an AUTO position on the Run Selection switch connected to the AUTO input on both controllers in a duplex. If the AUTO input is activated, then one car will be automatically selected to run during Phase 2 of Emergency Power Operation. For example: If one car happens to be out of service when the operation begins, the other car will be automatically selected to run.

If the Emergency Power option is selected, then the appropriate spare inputs should be selected also (see Section 5.4.7).
5.4.9.5 LIGHT LOAD WEIGHING? / LIGHT LOAD CAR CALL LIMIT - This option is only used when the Light Load Weigher Input is activated (refer to Section 5.4.7, LLI spare input). To program this option, activate the LLI input. Then, set LIGHT LOAD WEIGHING? to NO or press \boldsymbol{S} to select the maximum number of car calls registered before all the car calls are canceled. If \boldsymbol{S} is pressed, the display will read LIGHT LOAD CAR CALL LIMIT. Press \boldsymbol{S} until the desired number is displayed.
5.4.9.6 PHOTO EYE ANTI-NUISANCE? / CONSEC STOPS W/O PHE LIMIT - When this option is $O N$, the car calls will cancel if the Photo Eye input has not been activated after a programmed number of consecutive stops. The number of consecutive stops must be programmed before the car calls will cancel. To program this option, set PHOTO EYE ANTINUISANCE? to NO or press \boldsymbol{S} to select the number of consecutive stops. If \boldsymbol{S} is pressed, the display will read CONSEC STOPS W/O PHE LIMIT. Press S until the desired number is displayed.
5.4.9.7 PERIPHERAL DEVICE? - If this option is set to YES, it allows for various peripheral devices to be used. Currently the controller has 2 Communication Ports that can be programmed. Press \boldsymbol{N} to select the media for COM Port 1. The display will read PA COM1 MEDIA. One of the following media may be selected:

- SERIAL CABLE • MODEM
- LINE DRIVER • NONE

Press N again to select the peripheral device that will be connected to COM Port 1. The display will read PA COM 1 DEVICE. One of the following peripherals may be selected:

- CRT - NO KEYBOARD (color or monochrome)
- CRT AND KEYBOARD (color or monochrome)
- PERSONAL COMP. (to be used with CMS or as a graphic display)

If one of the CRT options was selected, the next option will be COLOR CRT? Select YES if you have a color CRT or NO if you have a monochrome CRT. If PERSONAL COMPUTER was
selected as the peripheral device, the next option will be FUNCTION. Select CMS or GRAPHIC DISPLAY.

A similar set of options will be displayed for COM Port 2. Each Communication Port (COM 1 and COM 2) must be programmed for a device and a media according to the particular job specifications to allow the particular peripheral device to operate properly.
5.4.9.8 AUTOMATIC FLOOR STOP OPTION? / AUTOMATIC STOP FLOOR \#? - When this option is set to a specific floor number, the car will automatically stop at that floor if the car is in motion.
5.4.9.9 CC CANCEL W/DIR REVERSAL? - This option will cause all of the previously registered car calls to be canceled whenever a direction reversal is detected.
5.4.9.10 CANCEL CAR CALLS BEHIND CAR? - If this option is set to YES and the car has a direction arrow (SUA/SDA), no car calls can be registered behind the car's current position. For example: If a car is at the fifth floor moving down, no car calls can be registered from sixth floor and above.
5.4.9.11 CE ELECTRONICS INTERFACE? - This option allows information such as position and arrival gong outputs to be provided for a CE electronics device. This option is to be used with the CE2242 CE Electronics Interface board which provides a 3-wire serial interface to CE electronic fixtures.
5.4.9.12 MASSACHUSETTS EMS SERVICE? / EMS SERVICE FLOOR \# - This option is provided in the state of Massachusetts only. This option is key-operated and provides immediate car service for Massachusetts Emergency Medical Service personnel.
5.4.9.13 MASTER SOFTWARE KEY - This option is a board-level control of the security system. MCE's Standard Security is initiated by the Master Software Key. There are three possible settings for the Master Software Key: ACTIVATED, ENABLED or DEACTIVATED.

- If set to ACTIVATED, Security is initiated.
- If set to ENABLED, Security is initiated only if the Building Security Input (BSI) is turned On.
- If set to DEACTIVATED, Security is deactivated regardless of the status of the BSI input.
5.4.9.14 PI TURNED OFF IF NO DEMAND? - Setting this option to YES will allow the PI outputs to turn OFF if the car has been inactive for an adjustable time (from 1 to 10 minutes).
5.4.9.15 HOSPITAL EMERG. OPERATION? - This option calls any eligible in-service elevator to any floor on an emergency basis. If this installation has Hospital Emergency Service Operation, a hospital emergency call switch will be installed at each floor where this service is desired.

When the hospital emergency momentary call switch is activated at any floor, the hospital emergency call registered light will illuminate at that floor only, and the nearest available elevator will respond to the hospital emergency call. All car calls within the selected car will be canceled and any landing calls which had previously been assigned to that car will be transferred to the other car. If the selected car is traveling away from the hospital emergency call, it will slow down and stop at the nearest floor without opening the doors, reverse direction, and proceed nonstop to the hospital emergency floor. If the selected car is traveling toward the hospital emergency floor, it shall proceed nonstop to that floor. At the time of selection, if the
car happens to slow down for a stop, it will stop without opening the doors and then start immediately toward the hospital emergency floor.
When the car reaches the hospital emergency floor, it will remain with doors open for a predetermined time interval. After this interval has expired, if the car has not been placed on in-car Hospital Emergency Service Operation, the car will automatically return to normal service.

A hospital emergency key switch will be located in each car operating station for selecting incar Hospital Emergency Service Operation. Upon activation of the key switch, the car will be ready to accept a call for any floor, and after the doors are closed, will proceed nonstop to that floor. Returning the key switch to the normal position will restore the car to normal service.

Either car selected to respond to a hospital emergency call will be removed from automatic service and will accept no additional calls, emergency or otherwise, until it completes the initial hospital emergency function. If both cars are out of service and unable to answer an emergency call, the hospital emergency call registered light will not illuminate.

Four outputs are available on the first $\mathrm{HC}-\mathrm{Cl} / \mathrm{O}$ board used for the hospital emergency service calls. Hospital Emergency Operation (HEO) will flash once the car has been selected to respond to a hospital emergency call and will remain flashing until the in-car hospital switch is returned to normal or the time interval that the car must wait for the in-car switch to be turned ON expires. Hospital Emergency Warning Indicator (HWI) will remain steadily ON for a car on Independent Service when the hospital call is registered. Hospital Emergency Select (HSEL) will remain steadily ON, indicating that the car has been selected to answer a hospital call, until the in-car hospital switch is turned ON or the time interval expires. Hospital Emergency Phase 2 (HOSPH2) will remain ON, indicating that the car has arrived at the floor where the hospital call was registered, until the in-car hospital switch is returned to normal or the time interval that the car must wait for the in-car switch to be turned ON expires.

If you do not have Hospital Emergency Service Operation, set this option to NO by pressing the \boldsymbol{S} pushbutton. Then, press the \boldsymbol{N} pushbutton to exit this option.

If you have Hospital Emergency Service Operation, set this option to YES by pressing the \boldsymbol{S} pushbutton. Press the \boldsymbol{N} pushbutton to continue. The following display will appear:

HOSPITAL CALLS
FRNT/FLR1? YES
If you want Hospital Emergency Service to this landing, then set this option to YES by pressing the \boldsymbol{S} pushbutton (press \boldsymbol{S} again to set the option to $N O$). Press the '+' pushbutton to scroll through the available landings. Press the \boldsymbol{N} pushbutton

HOSPITAL CALLS REAR/FLR1? YES to continue. If this car has rear doors, then the following will be displayed:

Press the '+' pushbutton to scroll through the available landings. The computer will continue to present these options for each floor, up to the top floor. Press the \boldsymbol{N} pushbutton to exit the Hospital Emergency Service option.
5.4.9.16 FIRE BYPASSES HOSPITAL? - Set this option to YES if Hospital Service is used for VIP, Priority or Commandeering Service. Set this option to NO if Hospital Service is truly used for Hospital Service.
5.4.9.17 HIGH SPEED DELAY AFTER RUN? - Setting this option will insert a fixed delay (3 seconds) between the completion of a run and the initiation of the next run. This option should be used in applications in which an immediate "stop/start" is undesirable. Under most "normal" circumstances, the initiation of a run is delayed by the time required for the door operation. In some cases, however, the car may stop and start immediately in the absence of a door operation (example: a direction reversal upon being assigned a hall call while the car is parking).
5.4.9.18 SABBATH OPERATION - If you do not have Sabbath Operation, set this option to $N O$ by pressing the \boldsymbol{S} Pushbutton. Then, press the \boldsymbol{N} pushbutton to exit this option.

If you have Sabbath Operation, set this option to $Y E S$ by pressing the \boldsymbol{S} pushbutton. Press the \boldsymbol{N} pushbutton to continue. The following display will appear:

"FRONT UP STOP AT FLOOR 1?"

If you want to set the car to stop at this floor while traveling in the UP direction, change $N O$ to YES by pressing the \boldsymbol{S} pushbutton (press \boldsymbol{S} again to set this option to $N O$). Press the + pushbutton to increment floor value to the next landing. Continue until all of the desired front UP stops are set to YES.

Press the \boldsymbol{N} pushbutton to proceed to the next eligibility map. If there are no walk through doors on this controller, then the rear eligibility maps will not display. In order, the next eligibility maps are as follows:

```
"REAR UP STOP AT FLOOR 1?"
"FRONT DOWN STOP AT FLOOR 2?"
"REAR DOWN STOP AT FLOOR 2?"
```

Remember that the + pushbutton increments the floor value to the next landing. And that the \boldsymbol{N} pushbutton will proceed to the next eligibility map.
5.4.9.19 LEVELING SENSOR ENABLED/DISABLED - If this option is set to disabled, the LFLT ON, LFLT OFF and DZ STUCK errors will not be generated.
5.4.9.20 KCE ENABLE / DISABLE - The KCE Enable is set to ON when ENABLE is selected or OFF when DISABLE is selected from the menu display.
5.4.9.21 ANALOG LOAD WEIGHER? NONE / MCE / K-TECH - This option enables the analog load weigher logic and selects the type of learn operation to be performed, depending on the type of load weigher installed.
5.4.9.22 IND. BYPASS SECURITY? YES / NO - This option determines if Elevator Security is bypassed when the car is on Independent Service (available only when Security is enabled).
5.4.9.23 ATS. BYPASS SECURITY? YES / NO - This option determines if Elevator Security should be bypassed when the car is on Attendant Service (available only when Security and Attendant Service are enabled).
5.4.9.24 CAR TO FLOOR RETURN FLOOR - This option determines the floor to which the car will be returned when the CAR TO FLOOR input is activated (see CTF in Spare Inputs Menu Options).
5.4.9.25 SCROLLING SPEED (SLOW / NORMAL / FAST) - Menu options which are too long to be fully displayed on the LCD display are scrolled. This option determines the scrolling speed.
5.4.9.26 LOW OIL SWITCH CONTACT (N.O. / N.C.) - This option should be set according to the type of low oil switch used (normally open or normally closed).
5.4.9.27 OFRP BETWEEN FLRS - This option indicates the floors in between which the OFRP spare output would trigger.

5.4.10 ASME A17.1 2000 FEATURES MENU

5.4.10.1 HOISTWAY ACCESS? (YES/NO) - Set this option to YES on elevators with Hoistway Access operation.
5.4.10.2 NUMBER OF MOTOR STARTERS = (1-3) - Indicates the total number of starters for this car.
5.4.10.3 MIN. NUMBER OF MOTORS $=(1-3)$ - Set the minimum number of starters required to run. This option is only available for multi-starter controllers.
5.4.10.4 SOFT-STOP TIMER $=$ (NONE / 0.1-1.0 SEC.) - The soft-stop timer will cause the pump to continue to operate for the programmed amount of time after the elevator has stopped to allow the valves to fully close.
5.4.10.5 STARTER \#1 TYPE: (WYE-DELTA / ACROSS THE LINE / SOLID STATE) - Select the appropriate type of starter. Applicable to starter \#1.
5.4.10.6 STARTER \#2 TYPE: (WYE-DELTA / ACROSS THE LINE / SOLID STATE / NONE) Select the appropriate type of starter. Applicable to starter \#2.

5.4.10.7 STARTER \#3 TYPE: (WYE-DELTA / ACROSS THE LINE / SOLID STATE / NONE) -

 Select the appropriate type of starter. Applicable to starter \#3.5.4.10.8 Y-D TRANSFER TIMER = (1.0-8.0 SEC.) - Represent the amount of time that the motor will run with a Wye contactor before switching to the Delta contactor. Set this option only for starters with WYE-DELTA configuration.
5.4.10.9 UP TO SPEED TIMER $=(1.0-8.0$ SEC. $)$ - Represent the amount of time that the controller will wait to allow the motor to accelerate to nominal speed. Set this option only for starters with ACROSS THE LINE or SOLID STATE configuration.
5.4.10.10 Y-D OPEN TRANSN. TIMER = (150-500 MSEC.) - Represent the time delay in picking the Delta contactor after the dropping of the Wye contactor. Set this option only for starters with WYE-DELTA configuration.
5.4.10.11 M CONTACTOR INSTALLED? (YES/NO) - Set this option to YES only for starters with M Contactors. Option not available for SOLID STATE starters.
5.4.10.12 STARTER CONFIG: (SEQUENTIAL / SIMULTANEOUS) - This option is only available for multi-starter Hydraulic systems. If the SEQUENTIAL option is set the starters will start in a sequential fashion to reduce inrush current. If the SIMULTANEOUS option is set then all starters in the system will start at the same time.
5.4.10.13 MULTIPLE VALVES? (YES/NO) - Set this option to YES when using multiple valves.
5.4.10.14 SPEED > 150 FPM? (YES/NO) - This option must be set to YES on ASME A17.12000 code compliant hydraulic elevators with speeds exceeding 150 FPM. When on Inspection operation, running at high speed is prevented by disabling the FUD output.

5.5 EXTERNAL MEMORY MODE

External Memory mode can be used to view memory addresses in the external RAM on the MC-PCA-OA-2K board. The external memory address is denoted by the letters DA (Data Address). The ability to view the external memory can also be helpful for diagnosing and troubleshooting the elevator system. The Computer External Memory Chart (Table 5.7) shows the meaning of the data digits at different addresses.

5.5.1 GETTING INTO EXTERNAL MEMORY MODE

External Memory mode is initiated by placing the F2 switch in the up position (see Figure 5.1). The following is a description of the LCD display format and the function of the N, S, +, and - pushbuttons during External Memory mode.

FUNCTION SWITCHES

F8 F7 F6 F5 F4 F3 F2 F1

External Memory mode

5.5.2 FUNCTION OF N PUSHBUTTON

The \mathbf{N} pushbutton (see Figure 5.1) allows for the advancement of the computer memory address, which is displayed on the second line of the LCD display. For example, for this display,

EXTERNAL MEMORY DA.1234:10110011 pressing the \boldsymbol{N} pushbutton once (hold it for 1-2 seconds) will cause the 1 in the address 1234 to begin blinking. By continuing to press the N pushbutton, the 2 in the address 1234 will begin to blink. The cycle will continue while the \boldsymbol{N} pushbutton is being pressed. Once the digit needed to be changed is blinking, the address can then be modified.

The data (8 digits) that correspond to the external memory address is displayed to the right of the address. This data display will change as the memory address changes.

5.5.3 FUNCTION OF S PUSHBUTTON

The \boldsymbol{S} pushbutton (see Figure 5.1) ends the ability to change the address by stopping the digit from blinking. If the \boldsymbol{S} pushbutton is not pressed, the selected digit will stop blinking automatically after 20 seconds.

5.5.4 FUNCTION OF + PUSHBUTTON

The + pushbutton (see Figure 5.1) modifies the digit of the computer memory address selected by the \boldsymbol{N} pushbutton. If the + button is pressed, the selected digit is incremented by one. The data display will also change as the address changes. For example, if the 2 of the address 1234 is blinking, pressing the + pushbutton once will change the address from 1234 to 1334. Pressing the + pushbutton several more times will change the address to 1434, 1534, 1634, etc., up to 1F34 and then back to 1034.

5.5.5 FUNCTION OF - PUSHBUTTON

The - pushbutton (see Figure 5.1) modifies the digit of the computer memory address selected by the N pushbutton. If the - pushbutton is pressed, the selected digit is decrement by one. The data display will also change as the address changes. For example: If the 2 in the address 1234 is blinking, pressing the - pushbutton once will change the address from 1234 to 1134. Pressing the - pushbutton several more times will change the address to 1034, 1F34, 1E34, etc.

5.5.6 TROUBLESHOOTING USING EXTERNAL MEMORY MODE

By using the computer's External Memory mode, it is possible to find out if the controller is receiving call signals correctly, as well as HC-IOX board input and output signals.
5.5.6.1 The following example illustrates how to use Table 5.7 to check a signal in the computer's external memory.

Example problem: The DHLD (Door Hold Open Switch) input will not cause the doors to stay open. DHLD is programmed for the Spare 5 input.

Step 1: Find SP5 in Table 5.7 (next page). Notice that the Address of SP5 is 02AF and the Position is 4.

Step 2: Look up the signal on the computer. Change the address on the display to Address 02AF (see Section 5.5). Look at data bit number 4 (from the

EXTERNAL MEMORY DA.02AF: 10110011 right), which is underlined in the following display:

This digit represents the computer's interpretation of the Spare 5 input signal. If the digit is 1 , the computer thinks that the SP5 signal is $O N$. If the digit is 0 , the computer thinks that the SP5 signal is off.

This information can be used to determine the source of the problem. If the Spare 5 input is programmed for the DHLD (Door Hold) input and the doors are not staying open, the diagnostic display will show that the SP5 input is off. If this is the case, checking the voltage on the SP5 terminal will show whether the problem is inside or outside the controller. See also 6.7.2 ASME A17.1-2000 REDUNDANCY FAULT DATA TRAP.

TABLE 5.7 Computer External Memory Chart

	HALL CALLS						CAR CALLS	
ADD	8	7	6	5	4	3	2	1
0140:	601R/UC1R	601/UC1					101R/CC1R	101/CC1
0141:	602R/UC2R	602/UC2	502R/DC2R	502/DC2			102R/CC2R	102/CC2
0142:	603R/UC3R	603/UC3	503R/DC3R	503/DC3			103R/CC3R	103/CC3
0143:	604R/UC4R	604/UC4	504R/DC4R	504/DC4			104R/CC4R	104/CC4
0144:	605R/UC5R	605/UC5	505R/DC5R	505/DC5			105R/CC5R	105/CC5
0145:	606R/UC6R	606/UC6	506R/DC6R	506/DC6			106R/CC6R	106/CC6
0146:	607R/UC7R	607/UC7	507R/DC7R	507/DC7			107R/CC7R	107/CC7
0147:	608R/UC8R	608/UC8	508R/DC8R	508/DC8			108R/CC8R	108/CC8
0148:	609R/UC9R	609/UC9	509R/DC9R	509/DC9			109R/CC9R	109/CC9
0149:	610R/UC10R	610/UC10	510R/DC10R	510/DC10			110R/CC10R	110/CC10
014A:	611R/UC11R	611/UC11	511R/DC11R	511/DC11			111R/CC11R	111/CC11
014B:	612R/UC12R	612/UC12	512R/DC12R	512/DC12			112R/CC12R	112/CC12
014C:	613R/UC13R	613/UC13	513R/DC13R	513/DC13			113R/CC13R	113/CC13
014D:	614R/UC14R	614/UC14	514R/DC14R	514/DC14			114R/CC14R	114/CC14
014E:	615R/UC15R	615/UC15	515R/DC15R	515/DC15			115R/CC15R	115/CC15
014F:	616R/UC16R	616/UC16	516R/DC16R	516/DC16			116R/CC16R	116/CC16
0150:	617R/UC17R	617/UC17	517R/DC17R	517/DC17			117R/CC17R	117/CC17
0151:	618R/UC18R	618/UC18	518R/DC18R	518/DC18			118R/CC18R	118/CC18
0152:	619R/UC19R	619/UC19	519R/DC19R	519/DC19			119R/CC19R	119/CC19
0153:	620R/UC20R	620/UC20	520R/DC20R	520/DC20			120R/CC20R	120//CC20
0154:	621R/UC21R	621/UC21	521R/DC21R	521/DC21			121R/CC21R	121/CC21
0155:	622R/UC22R	622/UC22	522R/DC22R	522/DC22			122R/CC22R	122/CC22
0156:	623R/UC23R	623/UC23	523R/DC23R	523/DC23			123R/CC23R	123/CC23
0157:	624R/UC24R	624/UC24	524R/DC24R	524/DC24			124R/CC24R	124/CC24
0158:	625R/UC25R	625/UC25	525R/DC25R	525/DC25			125R/CC25R	125/CC25
0159:	626R/UC26R	626/UC26	526R/DC26R	526/DC26			126R/CC26R	126/CC26
015A:	627R/UC27R	627/UC27	527R/DC27R	527/DC27			127R/CC27R	127/CC27
015B:	628R/UC28R	628/UC28	528R/DC28R	528DC28			128R/CC28R	128/CC28
015C:	629R/UC29R	629/UC29	529R/DC29R	529/DC29			129R/CC29R	129/CC29
015D:	630R/UC30R	630/UC30	530R/DC30R	530/DC30			130R/CC30R	130/CC30
015E:	631R/UC31R	631/UC31	531R/DC31R	531/DC31			131R/CC31R	131/CC31
015F:			532R/DC32R	532/DC32			132R/CC32R	132/CC32
SPARE INPUTS								
ADD	8	7	6	5	4	3	2	1
02AF:	SP9	SP8	SP7	SP6	SP5	SP4	SP3	SP2
02B0:	SP17	SP16	SP15	SP14	SP13	SP12	SP11	SP10
02B1	SP25	SP24	SP23	SP22	SP21	SP20	SP19	SP18
02B2	SP33	SP32	SP31	SP30	SP29	SP28	SP27	SP26
02B3	SP41	SP40	SP39	SP38	SP37	SP36	SP35	SP34
02B4	SP49	SP48	SP47	SP46	SP45	SP44	SP43	SP42
SPARE OUTPUTS *								
ADD	8	7	6	5	4	3	2	1
02EF:	OUT8	OUT7	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1
02F0:	OUT16	OUT15	OUT14	OUT13	OUT12	OUT11	OUT10	OUT9
02F1:	OUT24	OUT23	OUT22	OUT21	OUT20	OUT19	OUT18	OUT17
02F2:	OUT32	OUT31	OUT30	OUT29	OUT28	OUT27	OUT26	OUT25

* This table shows the spare outputs for HC-IOX boards. If an HC-I40 board is used, the outputs follow those of an HC-IOX board and are in the following format. Increment the output numbers accordingly.

HC-I4O board spare output format

HC-I4O board spare output format								
ADD	8	7	6	5	4	3	2	1
02xx:	OUT4	OUT3	OUT2	OUT1	not used	not used	not used	not used

TABLE 5.8 Computer's Hospital Call and Eligibility Memory Chart

	HOSPITAL CALL ELIGIBILITY				HOSPITAL CALLS			
	OTHER CAR		THIS CAR		ASSIGNED HOSPITAL CALLS		REGISTERED HOSPITAL CALLS	
	REAR	FRONT	REAR	FRONT	REAR	FRONT	REAR	FRONT
ADD	8	7	6	5	4	3	2	1
0240:							ECR1	EC1
0241:							ECR2	EC2
0242:							ECR3	EC3
0243:					,		ECR4	EC4
0244:							ECR5	EC5
0245:					,	,	ECR6	EC6
0246:					,		ECR7	EC7
0247:							ECR8	EC8
0248:					,		ECR9	EC9
0249:							ECR10	EC10
024A:							ECR11	EC11
024B:							ECR12	EC12
024C:							ECR13	EC13
024D:					,		ECR14	EC14
024E:					,		ECR15	EC15
024F:							ECR16	EC16
0250:							ECR17	EC17
0251:							ECR18	EC18
0252:					,		ECR19	EC19
0253:					,		ECR20	EC20
0254:							ECR21	EC21
0255:							ECR22	EC22
0256:							ECR23	EC23
0257:							ECR24	EC24
0258:							ECR25	EC25
0259:					,	,	ECR26	EC26
025A:							ECR27	EC27
025B:							ECR28	EC28
025C:							ECR29	EC29
025D:							ECR30	EC30
025E:							ECR31	EC31
025F:					,	,	ECR32	EC32

Floor \# 1

Floor \# 2
Floor \# 3
Floor \# 4
Floor \# 5
Floor \# 6
Floor \# 7
Floor \# 8
Floor \# 9
Floor \# 10
Floor \# 11
Floor \# 12
Floor \# 13
Floor \# 14
Floor \# 15
Floor \# 16
Floor \# 17
Floor \# 18
Floor \# 19
Floor \# 20
Floor \# 21
Floor \# 22
Floor \# 23
Floor \# 24
Floor \# 25
Floor \# 26
Floor \# 27
Floor \# 28
Floor \# 29
Floor \# 30
Floor \# 31
Floor \# 32

Legend for Table 5.8:

$\rightarrow \quad$| Registered hospital calls for the floor opening. |
| :--- |
| $1=$ call is registered |
| $0=$ call is not registered |

$\rightarrow \quad$| Assigned hospital calls for the floor opening. |
| :--- |
| $1=$ Call is assigned |
| $0=$ Call is not assigned |

$\rightarrow \quad$| The car is eligible for Hospital Emergency Service Operation for the floor opening. |
| :--- |
| $1=$ Hospital emergency call can be entered for the floor opening |
| $0=$ Hospital emergency call cannot be entered for the floor opening |

5.6 SYSTEM MODE

System mode allows the user to change certain systemwide options that do not require the car to be on Inspection. To enter System mode, move the F3 switch to the up position. Press the \boldsymbol{N} pushbutton to select the desired System Mode item:

- Building Security Menu (see Section 5.6.1)

FUNCTION SWITCHES
F8 F7 F6 F5 F4 F3 F2 F1

System mode

- Passcode Request Menu (see Section 5.6.2)
- Load Weigher Thresholds (see Section 5.6.3)
- Analog Load Weigher Learn Function (see Section 5.6.4)
- ASME A17.1-2000 Options (see Section 5.6.5)

5.6.1 BUILDING SECURITY MENU

Elevator Security is typically used to prevent access to specific floors via the elevators, or to limit access to passengers with a valid security code. MCE's elevator security options include Basic Security and Basic Security with CRT. Basic Security provides a means to prevent registration of unauthorized car calls. Basic Security with CRT provides a means to prevent registration of unauthorized car calls and/or hall calls and additional programming options are available via the CRT terminal. Refer to MCE's Elevator Security User's Guide, part \# 42-02S024 for additional information and instructions for using the CRT terminal. The Appendix Elevator Security Information and Operation in this manual provides instructions for passengers who will be using the elevator while Security is ON. For both Basic Security and Basic Security with CRT, the security codes for each floor are programmed as described below.

The Security code for each floor may consist of one to eight characters where each character is one of the floor buttons found in the elevator car. With Basic Security, any floor with a programmed security code is a secured floor when Security is ON. Refer to the Elevator Security User's Guide for information on turning Basic Security with CRT ON or OFF. Basic Security (without CRT) is turned ON or OFF by the Building Security Input (BSI) in combination with the Master Software Key parameter in the Extra Features Menu (Program mode). There are 3 possible settings for the Master Software Key: ACTIVATED, ENABLED, and DEACTIVATED:

- If set to ACTIVATED, Security is ON.
- If set to ENABLED, Security is ON when the BSI input is turned ON.
- If set to DEACTIVATED, Security is OFF regardless of the status of BSI.

To find the BSI input, refer to the job prints. When Security is ON, all car calls are screened by the computer and become registered only if 1) the call is not to a secured floor, or 2) the call is to a secured floor and its security code is correctly entered within 10 seconds.
5.6.1.1 VIEWING THE BUILDING SECURITY MENU - Place the F3 switch in the up position (with all other switches in the down position).

The following display appears:

Press the \boldsymbol{N} pushbutton.

The following display appears:

```
* BUILDING *
*SECURITY MENU *
```

5.6.1.2 PROGRAMMING AND VIEWING THE SECURITY CODES - Press the \boldsymbol{S} pushbutton to start programming or changing the Security codes (or to view the codes).

If no code has been programmed, then the computer displays NO CODE PROGRAMMED for that particular floor number. Press the \boldsymbol{S} pushbutton again to start programming the Security code.

If a code has already been programmed, then the computer displays the security code. The cursor will blink below the floor number for the Security code being displayed.

Press the + and - pushbuttons to change the floor number. The + pushbutton increments the value that is being displayed to the next eligible value. The - pushbutton decrements the value.

Press the \boldsymbol{S} pushbutton to move the cursor to the first character of the Security code. Press the + and - pushbuttons to change the value of the first character. Repeat these steps (pressing the \boldsymbol{S} pushbutton followed by the + and pushbuttons) until the desired number of characters are programmed (maximum of 8 characters). The \boldsymbol{S} pushbutton moves the position of the blinking cursor according to the diagram at the right. If any character is left blank, or after all eight characters have been programmed, and the \boldsymbol{S} pushbutton is pressed, the cursor returns to the floor number.

Repeat these steps (Section 5.6.1.2) to program the Security codes for all the floors. You may exit the Building Security Menu at any time during programming by pressing the \boldsymbol{N} pushbutton. When the \boldsymbol{N} pushbutton is pressed, the LCD will

```
Flr 1f: NO
    CODE PROGRAMMED
```

Flr 1f: 8r 3f 4f
2r21f31r19f17r

Exit this menu?
N=No S=Yes display the following:

Press the \boldsymbol{S} pushbutton to exit or the \boldsymbol{N} pushbutton to return to the previous display. If \boldsymbol{S} is pressed, the following will appear (only if changes have been made):

```
Save Changes?
    N=No S=Save
```

Press \boldsymbol{S} to save the changes or \boldsymbol{N} to exit without saving (any original codes will remain in effect if the changes are not saved).
5.6.2 PASSCODE REQUEST MENU - The Passcode Request Operation can be used to require a password to be entered in order to run the car on any mode of operation other than Inspection.

> NOTE: If a passcode has not been programmed for this controller, the Passcode Request Menu will not appear.

If a passcode has been programmed, the LCD screen will flash the "PASSCODE REQUESTED" message when Passcode Request Operation is activated.

PASSCODE REQUEST
PI 8 20:10001000

In order to clear or set the Passcode Request Operation, the controller must first be placed into the System Mode as described in Section 5.6. By pressing the \boldsymbol{N} pushbutton when the display reads "BUILDING SECURITY MENU," the Passcode Request Menu will appear:

* PASSCODE * REQUEST MENU

Screen 1
CLEARING THE PASSCODE - With Screen 1 displayed, press the \boldsymbol{S} pushbutton. If Passcode Request Operation is activated, the following screen appears:

The first character of the passcode to be entered will blink. The " + " and "-" pushbuttons will scroll through the numbers 0-9 and letters A-Z for each character of the passcode. The \boldsymbol{N} pushbutton will advance to the next character position of the passcode. Pressing the \boldsymbol{S} pushbutton will cause the program to verify that the passcode entered was correct. If it was not correct, the following screen will appear:

* INVALID CODE * S=CONT . N=EXIT

Screen 3
Pressing the \boldsymbol{S} pushbutton will display Screen 2. Pressing the \boldsymbol{N} pushbutton from this screen will return the display back to Screen 1.

If the correct passcode was entered, the following screen appears:

Pressing the \boldsymbol{N} pushbutton will return the display to Screen 1. The car may now be run on Normal operation mode.

ACTIVATING THE PASSCODE - With Screen 1 displayed, press the Spushbutton. If Passcode Request Operation is not activated, the following display appears:

ACTIVATE PASSCODE? NO

Screen 5

Pressing the \boldsymbol{S} pushbutton will toggle the display from "NO" to

* VALID CODE * N=EXIT

Screen 4
"YES". Pressing the \boldsymbol{N} pushbutton while "NO" is displayed will return the display back to the Screen 1. Pressing the \boldsymbol{N} pushbutton while "YES" is displayed will activate the Passcode Request Operation and return the display back to Screen 1. With Passcode Request Operation activated, the passcode must be entered in order to run the car on any mode of operation other than Inspection.
5.6.3 LOAD WEIGHER THRESHOLDS - The load weigher (isolated platform or crosshead deflection) provides a signal that corresponds to the perceived load in the car. This signal is brought to the control system where it is conditioned, sampled and digitized, and the value is used to calculate the actual load inside the elevator. This load value is then used for logical
dispatching operations. The load thresholds are user-programmable and determine when each of these logical operations should be performed.

- LIGHT LOAD WEIGHER (LLW): This value is used to define the load at which a limited number of car calls is to be registered (anti-nuisance). If the programmed number of car calls is exceeded, all car calls will be canceled.

Example: $\mathrm{LLW}=\mathbf{2 0 \%}$. If the measured load in the car is less than 20%, the computer will only allow a certain number of car calls to be registered, defined by the parameter LIGHT LOAD WEIGHING? / LIGHT LOAD CAR CALL LIMIT in the EXTRA FEATURES MENU OPTIONS. If the limit is set to a value of three, the computer will only allow three calls to be registered if the load is less than 20%. If a fourth call is registered, all car calls will be canceled.

- DISPATCH LOAD WEIGHER (DLW): This value is used to define the load at which the lobby landing door timer is reduced. This threshold should be set to a value (defined in many specifications as 60\%) at which it is appropriate to initiate the process of moving the car out of the lobby.
- HEAVY LOAD WEIGHER (HLW): This value is used to define the load value at which hall calls should be bypassed.
- OVERLOAD WEIGHER (OLW): This value is used to define the load at which it is considered unsafe to move the elevator. When this threshold is exceeded, the car will remain at the floor with doors open. Typically an application that requires OLW will use some type of visual and/or audible indicator to alert elevator passengers that the car is overloaded.
- OVER LOAD 2 WEIGHER (OLW2): When on Fire Service, this value is used instead of the Overload Weigher value (see OVERLOAD WEIGHER above).

ADJUSTING THE LOAD THRESHOLDS

The typical values for the load thresholds are shown below. However, these thresholds are user-adjustable and may be changed at any time.

Load Threshold

- LIGHT LOAD WEIGHER (LLW)

Default Value	Range
20%	$0-40 \%$
50%	$20-80 \%$
80%	$50-100 \%$
105%	$80-125 \%$
$0 \%=$ disabled	$100-140 \%$

To adjust these thresholds:
a. Enter the SYSTEM mode of operation by placing the F3 switch in the up position.
b. Press the \boldsymbol{N} pushbutton until LOAD WEIGHER THRESHOLDS appears on the LCD display.
c. Press the \mathbf{S} pushbutton to display the load threshold you wish to set.

```
* LOAD WEIGHER *
* THRESHOLDS *
```

```
LIGHT LOAD
```

LIGHT LOAD
WEIGHER = 20%

```
WEIGHER = 20%
```

d. The value shown is the current threshold value expressed as a percentage of the full load value (see the table above). Press the '+' or '-' pushbutton to adjust the value. If the value is set to 0%, the load weigher function is disabled.
e. Press the \boldsymbol{S} pushbutton to select another load threshold to adjust or press the \boldsymbol{N} pushbutton to exit this menu.
f. Place the F3 switch in the down position to exit SYSTEM mode when finished.

If an analog load weigher is used, the Analog Load Weigher Learn Function must be performed before the load weigher system will perform properly (see Section 5.6.4).

5.6.4 ANALOG LOAD WEIGHER LEARN FUNCTION

With the isolated platform load weigher (MCE), the system simply learns the reference values of the empty and fully loaded car weight. However, with the crosshead deflection load weigher (K-Tech), the system must learn the reference values at each floor due to the dynamics of the elevator system. This is necessary because the perceived load at the crosshead varies with the position of the car in the hoistway due to the changing proportion of the traveling cable hanging beneath the car and the position of the compensation cables.

The Analog Load Weigher Learn Function is performed as follows:
a. Move the empty car to a convenient floor where the test weights are located. It is best to have one person in the machine room and another person at the floor to load the weights.
b. Place the car on Independent Service operation. If an Independent Service switch is not available in the car, place a jumper between panel mount terminal 2 and terminal 49 on the Main Relay board (SC-SB2K-H).
c. Place the F3 switch in the up position and press the N pushbutton to select the Analog Load Weigher Learn Function (scrolling message is displayed).

ANALOG LOAD WEIGH
PRESS S TO START
d. Press the \boldsymbol{S} pushbutton to start. The computer responds with one of two scrolling messages:

- CAR NOT READY TO LEARN, MUST BE ON INDEPENDENT SERVICE.

Verify that the car has been placed on Independent Service.

- READY TO LEARN EMPTY CAR VALUES? PRESS S TO START.

If the empty car values have already been learned and you want to be learn the full car values, press the \boldsymbol{N} pushbutton (go to step 'e').
To begin learning the empty car values, press the \boldsymbol{S} pushbutton. The computer displays the message:

- LEARNING EMPTY CAR VALUES. PRESS N TO ABORT.

If the Extra Features Menu Option "Analog Load Weigher?" is set to K-TECH, the car will move to the bottom floor, record the empty car value and then move up, stopping at each floor to record the empty car value. When the top floor has been reached, the car will move back to the floor at which the Analog Load Weigher Learn Function was begun and the computer will display the scrolling message:

- EMPTY CAR LEARN PROCESS COMPLETED. PRESS S TO CONT.

If the Extra Features Menu Option "Analog Load Weigher?" is set to MCE, the car will learn the empty car value and then display the message:

- EMPTY CAR LEARN PROCESS COMPLETED. PRESS S TO CONT.

Press the \boldsymbol{S} pushbutton.
e. The computer displays the scrolling message:

- READY TO LEARN FULL CAR VALUES? PRESS S TO START.
f. Place the full load test weights in the car and press the \boldsymbol{S} pushbutton to begin learning the full car values. The computer displays the message:
- LEARNING FULL CAR VALUES. PRESS N TO ABORT.

If the Extra Features Menu Option "Analog Load Weigher?" is set to K-TECH, the car will move to the bottom floor, record the full car value and then move up, stopping at each floor to record the full car value. When the top floor has been reached, the car will move back to the floor at which the Analog Load Weigher Learn Function was begun and the computer will display the scrolling message:

- FULL CAR LEARN PROCESS COMPLETED. PRESS S TO CONT.

If the Extra Features Manu Option "Analog Load Weigher?" is set to MCE, the car will learn the full car value and then display the message:

- FULL CAR LEARN PROCESS COMPLETED. PRESS S TO CONT.

Press the \boldsymbol{S} pushbutton, place the \boldsymbol{F} 3 switch in the down position and take the car off of Independent service.
g. To verify that the Load Weigher Learn Function has been performed successfully, place the F8 switch in the up position. With the test weights in the car, the following should be displayed:

If the Load Weigher Learn Function has not been performed successfully, the following will be displayed:

```
CURRENT LOAD
= 100%
```

```
CURRENT LOAD
= NOT LEARNED
```

h. The Load Weigher Learn Function (empty or full values) may be aborted at any time by pressing the N pushbutton. The computer will display the message:

- LEARN PROCESS ABORTED... PRESS S TO CONT.

When the \boldsymbol{S} pushbutton is pressed the computer displays the scrolling message:

- ANALOG LOAD WEIGHER LEARN FUNCTION. PRESS S TO START

At this point you may exit System Mode by placing the F3 switch in the down position, or you may re-start the learn function by moving the car back to the floor where the test weights are located and press \boldsymbol{S} to start (go to step 'd').

If the empty car values have been learned but the full load learn function was aborted, you need not re-learn the empty car values. When the message READY TO LEARN EMPTY CAR VALUES is displayed, press the Npushbutton. The computer will display:

- READY TO LEARN FULL CAR VALUES? PRESS S TO START.

Press the \boldsymbol{S} pushbutton to begin learning the full car values (go to step 'f').

5.6.5 ASME A17.1-2000 OPTIONS

Once in system mode operation, perform the following steps in order to invoke the A17.1-2000 fault bypass mode. This allows the mechanic time to setup and adjust the car without nuisance shut downs. There are two independent bypass modes; one for inspection operation with indefinite time limit and one for automatic operation where the time limit is two hours. It takes several steps to bypass the A17.1 faults in either mode:
5.6.5.1 ASME A17.1-2000 REDUNDANCY BYPASS. JUMPER MUST BE INSTALLED TO ACTIVATE. (BYPASS ON / BYPASS OFF) - The BYPASS ON option is set when all ASME A17.1-2000 redundancy checking needs to be bypassed for trouble shooting purposes. This option can only be set if the bypass jumper is installed. The maximum time limit for the bypass is two hours after which this option will deactivate automatically.

ACTIVATION OF AUTOMATIC FAULT BYPASS MODE

1. Place car on either automatic or test mode (use TEST/NORM switch on SC-SB2K-H)
2. Place a jumper between 2KBP1 and 2KBP2 on the SC-BAH board.
3. Enter system mode (F3 = UP) and set option ASME A17.1-2000 REDUNDANCY BYPASS to BYPASS ON.

Once invoked the A17.1-2000 fault logic will be bypassed for 2 hours. After the two hours have elapsed the system will be shut down. To obtain another two hours of bypass mode, simply repeat steps 1 through 3 above.

Once adjustment is complete set BYPASS OFF to reinvoke the A17.1 fault monitoring.
5.6.5.2 LONG TERM, INSPECTION ONLY ASME A17.1-2000 REDUNDANCY BYPASS. JUMPER MUST BE INSTALLED TO ACTIVATE. (BYPASS ON / BYPASS OFF) - The BYPASS ON option is set when all ASME A17.1-2000 redundancy checking needs to be bypassed for trouble shooting purposes on inspection operation. This option can only be set if the bypass jumper is installed. There is no time limit for this option.

ACTIVATION OF INSPECTION FAULT BYPASS MODE

1. Place car on inspection operation (use INSP/NORM switch on SC-SB2K-H board).
2. Place a jumper between 2 KBP 1 and 2 KBP 2 on the SC-BAH board.
3. Enter system mode (F3 = UP) and set option LONG TERM, INSPECTION ONLY ASME A17.1-2000 REDUNDANCY BYPASS to BYPASS ON.

Once invoked the A17.1-2000 fault logic will be bypassed indefinitely. Once the inspection transfer switch is moved to the normal position, the A17.1 faults will not be invoked until the car is floor level.

Once adjustment is complete set BYPASS OFF to reinvoke the A17.1 fault monitoring.

5.7 DUPLEXING

A great advantage of the PTC Series is how easily it can be duplexed. Because the duplexing logic is completely internal to the computers, it requires only a connecting cable and the selection of the Duplex option (see Section 5.4.2.1). The duplexing logic provides for proper assignment of hall calls to cars and increases efficiency and decreases waiting time.

5.7.1 DISPATCHING ALGORITHM

The dispatching algorithm for assigning hall calls will be real time-based on estimated time of arrival (ETA). In calculating the estimated time of arrival for each elevator, the dispatcher will consider, but not be limited to, the location of each elevator, the direction of travel, the existing hall call and car call demand, door time, MG start up time, flight time, lobby removal time penalty and coincidence call.

5.7.2 HARDWARE CONNECTIONS

There are two critical items in duplexing hardware: Proper grounding between the two controller subplates and proper installation of the duplexing cable. The hall calls will be connected to both cars simultaneously. Once in a duplex configuration, either of the two controllers can become the dispatcher of hall calls. The controller that assumes the dispatching duty on power up remains the dispatching processor until it is taken out of service. If, for any reason, the communication link between the two controllers does not function, each car will respond to the registered hall calls independently.

5.7.3 TROUBLESHOOTING

In a duplexing configuration, the controller that assumes dispatching duty is identified by the letter D in the upper left corner of the LCD display. The other car is identified by the letter S (slave), in the upper left corner of the LCD. If the upper left-hand corner of the LCD is blank (neither the D nor the S is displayed), the cars are not communicating, the following troubleshooting steps should be taken:
Step 1: Check for proper grounding between the two subplates.
Step 2: Check the communication cable hook-up.
Step 3: The JP3 jumper is installed on both MC-PCA-OA-2K boards (found next to the power supply terminals, see Figure 5.1) as the default configuration for duplex communication. JP3 is an EIA-485 Standard Communication Termination jumper. However, in an attempt to optimize the duplex communication, the JP3 jumper may be removed from either one or both of the MC-PCA-OA-2K boards.
Step 4: If all of the above are unsuccessful, contact MCE.
If the D and/or S indicators on the LCD are flickering, it is most likely caused by bad communication and the following troubleshooting steps should be taken:

Step 1: Check the Communication Time-Out Error Counter shown in Table 5.4 (Address 42). If the counter is actively counting errors, the slave computer is not responding to the dispatcher's request for information. If the cause is a communication problem, complete Steps 1-4 above.
Step 2: Check the Communication Checksum Error Counter shown in Table 5.4 (Address 43). If the counter is actively counting errors, the data being received is bad or does not have integrity and cannot be used by the computer. If the cause is a communication problem, complete Steps 1-4 above.

SECTION 6 TROUBLESHOOTING

6.0 GENERAL INFORMATION

MCE's PHC controllers are equipped with certain features that can help field personnel speed up troubleshooting. The system is designed so that tracing signals from the field wires onto various boards and into the computer can be achieved without the need for mechanical removal of any components or for rear access to the boards. The following pages will describe how to use these features and speed up the troubleshooting process.

Overall, the computer (MC-PCA-OA-2K board) and the program are the most reliable parts of the system. Diagnostic mode on the computer is the most helpful tool for troubleshooting. Therefore, it is best to start with the computer. Refer to Section 5.3 of this manual for instructions on using Diagnostic mode. When viewing the diagnostic LCD display, be observant of any contradictory information (i.e., the High Speed light should not be on while the Doors Locked light is off).

6.1 TRACING SIGNALS IN THE CONTROLLER

Typically, a malfunction of the control system is due to a bad input or output signal. Inputs are signals generated outside the controller cabinet and are brought to the designated terminals inside the cabinet and then read by the computer. Outputs are signals generated inside the computer, and are usually available on terminal blocks inside the controller cabinet. Since a fault on any input or output can be the cause of a system malfunction, being able to trace these signals and find the source of the problem is essential. The following is an example that shows how an input signal can be traced from its origination point to its destination inside the computer. For example, look at the Door Zone (DZ) input. Using the Diagnostic mode instructions in Section 5.3 of this manual, use the $\boldsymbol{N}, \mathbf{S}, \boldsymbol{+}$, and - pushbuttons to address and observe the Door Zone (DZ) flag, which shows the status of the Door Zone (DZ) input. Moving the car in the hoistway should cause this flag to turn on (1) and off (0) whenever the car passes a floor. If the status of the (DZ) flag does not change, one of the following could be a cause of the problem:

1. A defective Door Zone switch or sensor on the landing system car top unit.
2. Incorrect hoistway wiring.
3. Bad termination of hoistway wiring to the (DZ) terminal inside the controller.
4. A defect on the SC-SB2K Relay board or HC-PCI/O board.

The first step is to determine if the problem is inside or outside of the controller. To do so, use a voltmeter to probe the Door Zone terminal (27) on the Relay board. This terminal is in Area 3 of the Job Prints (areas of the Job Prints are marked on the left-hand side of the pages and certain signals may be in locations different from the print area mentioned in this guide). Moving the car in the hoistway should cause the voltmeter to read 115VAC when the car is at Door Zone. If the signal read by the voltmeter does not change when the car passes the Door Zone, then the problem must be external to the controller and items (1), (2), or (3) should be examined. If the signal read by the voltmeter does change as the car passes the Door Zone, the problem must be internal to the controller and item (4) must be examined. From the print, notice that this input goes to the right-hand side of the DZ relay and to a 47K 1W resistor. The 47K 1W resistor conducts the signal to pin 8 of the C2 connector on the top of the SC-SB2K-H Relay board. Next, a 20-pin ribbon cable conducts the signal to pin 8 of the C2 connector on the $\mathrm{HC}-\mathrm{PCl} / \mathrm{O}$ board.

Figures 6.1 and 6.2 show pictures of the $\mathrm{HC}-\mathrm{PCI} / \mathrm{O}$ and SC-SB2K-H boards showing where the DZ signal can be found on these boards. Notice that if terminal 27 is powered, there should be approximately 115 VAC at the bottom of the 47 K 1 W resistor corresponding to DZ on the SC-SB2K-H board. Whereas the top of the same resistor should read approximately 5VAC if the C 2 ribbon cable is connected. If the ribbon cable is disconnected, the reading should be 115VAC at the top of this same resistor. This is because the other half of the voltage divider is on the HC-PCI/O board.

The SC-SB2K-H board has test pins near many of the relays. These pins are for use during the inspection and testing of section 4. Use the controller wiring diagrams to locate the test pins. Pins on the left of relay coils (as depicted in the schematics) would need to be connected to TP1 (fused 1-bus) to energize the associated relay. Pins located on the right hand side of the coil would be connected to TP2 (fused 2-bus, 120 VAC) to allow the relays to pick. Some relays require both test points (TP1 and TP2) to allow the coil to energize. Relays that do not have associated test pins can be readily energized via the terminals connected to the coils (like CHDT, use screw terminal 9).

It is therefore not necessary to remove the SC-SB2K-H board to check the operation of the relays. The signals can also be traced on the HC-PCI/O board. See Figure 6.1 for details. If the signal gets to the HC-PCI/O board but does not get to the computer, it would be safe to assume that the problem is on the $\mathrm{HC}-\mathrm{PCI} / \mathrm{O}$ board.

INDICATORS	REDUNDANCY CHECKING TEST POINTS	
Earthquake:	ESB: TP1 (fused 1-bus) and TP13	IN1, IN2: TP7 and TP2 (fused 2-bus, 120VAC)
SWITCHES	SAFR1: TP1 (fused 1-bus) and TP3	LU: Terminal 26 and TP2 (fused 2-bus, 120VAC)
Earthquake Reset Pushbutton:	SAFR2: TP1 (fused 1-bus) and TP4	LD: Terminal 25 and TP2 (fused 2-bus, 120VAC)
Fault Reset Pushbutton:	UP: TP1 (fused 1-bus) and TP5	CD: TP2 (fused 2 bus) with screw terminal CD
Machine Room Inspection Transfer INSP/NORM:	DN: TP1 (fused 1-bus) and TP6	H: TP1 (fused 1-bus) and TP11 and
Machine Room Inspection Up/Dn:		TP10 and TP2 (fused 2-bus, 120VAC)

6.2 DOOR LOGIC

As complex as it is, the Door Logic portion of the software answers one simple question: Should the doors be open? The computer looks at certain inputs and then calls upon specific logic to determine the answer to this basic question. All of these inputs and all of the flags generated by the specific logic are available for viewing through Diagnostic mode on the computer. When troubleshooting a door problem, inspecting the action and sequence of these flags and inputs is very important. When the meaning of the flags becomes more familiar, the state of these flags will generally serve to point to the root of the problem. Once the computer has determined the answer to the door status question, the appropriate outputs are turned on and/or off to attempt to cause the doors to be in the desired state.

The computer looks at the following inputs:

DBC -	Door Close Button Input	
DCLC -	Door Closed Contacts Input (Retiring Cam only)	
DLK -	Door Locks Input	
DOB -	Door Open Button Input	
DOL -	Door Open Limit Input	
DZ	-	Door Zone Input
DZX -	Door Zone Auxiliary	
PHE -	Photo Eye Input	
SE	-	Safety Edge Input
DPM -	Door Position Monitor	

The computer generates the following outputs:

DCF	Door Close Function Output
DCP	\quad Door Close Power Output
DOF	

Associated important computer-generated logic flags:

CCT -	Car Call Time Flag
DOI -	Door Open Intent Flag
DSH -	Door Shortening (Intermediate) Flag
DSHT -	Door Shortening (Final) Timer Flag
HCT -	Hall Call Time Flag
LOT -	Lobby Call Time Flag
SDT -	Short Door Time Flag

The computer uses the flags and inputs listed above to make a decision concerning the desired state of the doors. This decision has only two possible goals: doors open or doors closed. The computer's answer to this question is reflected in the state of the Door Open Intent (DOI) flag. This flag can be seen by using Diagnostic mode on the computer.

- If the computer decides the doors should be open, DOI flag is set to $O N(\mathbf{1})$
- If the computer decides the doors should be closed, DOI flag is set to $\operatorname{OFF}(\mathbf{0})$. The DOI flag is a useful flag to inspect when troubleshooting door problems. This flag shows the intention of the computer concerning the state of the doors. Figure 6.3 shows how DOI relates to door operation, as is described in the following paragraph.

Remember that if the DOI flag is $O N(1)$, it will turn $O N$ the DOF output which should pick the DO relay. The door will remain open until the DOL (Door Open Limit) input goes away. This will shut off the DOF output while the doors are open and DOI is on. Turning off the DOI flag will turn on the DCF output, which will pick the DC relay and close the doors. While there is no demand to go anywhere, the signal that shuts off the DCF output is DLK (Doors Locked), or possibly DCLC if the car has a retiring cam. However, there is a 2 -second delay before the DCF
output turns off after the doors are locked. If there is any demand (as is evidenced by the DMU or DMD flags being on) and if the DOI flag is not on (0), then the DCP output will be turned on regardless of the position of the door. The DCP output is used to provide door closing power for those door operators requiring power while the car is running, such as those manufactured by G.A.L. Corporation.

FIGURE 6.3 Door operation flowchart
Door Sequence of Operation

Door Operation Timing Diagram

Start with door fully open...

The various values of door standing open time result from the type of call canceled or responded to. A hall call cancellation will give an HCT flag and a car call cancellation will give a CCT flag. A door reopen from a hall or car call button at the lobby, or a lobby hall or car call cancellation will give a LOT flag. A door reopen from the Photo Eye, Safety Edge or Door Open button will give a SDT flag. Each flag (HCT, CCT, LOT or SDT) has a separate door standing open time.

The door logic provides protection timers for the door equipment both in the open and the close direction. If the doors get stuck because of the door interlock keeper failing to lift high enough to clear the door interlock during the opening cycle, then the doors cannot complete their opening cycle. This could result in damage to the door motor. The door open protection timer will eventually stop trying to open the doors so the car can go on to the next call. Similarly, if the doors do not close all the way (i.e., the doors do not lock), the computer will recycle the doors at a programmed interval in an attempt to clear the problem.

To provide a clearer understanding of the computer logic, note that the logic looks for a reason to open the doors. If a valid reason to open the doors is not found, or if conditions are detected that prohibit the opening of the doors, the logic will close the doors (reset or turn off DOI). To open the doors, the car must be in a door zone and not running at high or intermediate speed. Once the car has settled into a proper position to open the doors, a condition must exist that says to the logic that the doors should be open.

Some of these conditions are listed below:

- \quad Call demand at the current landing (or a call has just been canceled)
- Safety Edge/Door Open button (DOB) input
- Emergency/Independent Service conditions
- Photo Eye input

When a call is canceled, one of the following door time flags should be set (turned on): CCT, HCT or LOT. When one of the reopening devices is active (SE, PHE or DOB), the SDT flag
should be set. When an Emergency or Independent Service condition exists, the presence of a particular condition will cause the DOI flag to be set. Some of these conditions include the following: Fire Service, Emergency Power operation, Independent Service, Attendant Service, etc.

Once the intention of the computer has been determined, inspect the high voltage hardware to see if the appropriate functions are being carried out. For example, if the doors are closed and DOI is set, the doors should be opening (DO relay picked). If the doors are open and DOI is cleared (turned off), the doors should be closing (DC relay picked).

The trouble arises when the door control system is not doing what the mechanic thinks it should be doing. However, when troubleshooting, it is vital to determine if the control system is doing what it thinks it should be doing. If the control system (high voltage section) is doing what the logic intends it to do, then determining how the logic is coming to its conclusions is important. If the control system is not doing what the logic intends it to do, then determining what is preventing the desired function from being carried out is equally important (bad relay, bad triac, etc.). Diagnostic mode on the MC-PCA-OA-2K Computer board will help to determine which situation is present. The output flags will show which outputs the computer is attempting to turn on or off. These flags can be compared with what is actually happening in the high voltage hardware.

Consider, as an example, this problem: the doors are closed and locked, but the DC relay is always picked, preventing the doors from opening when they should. The cause of the problem must first be isolated. If both the DCF and DCP flags are cleared (turned off) in the computer, the DC relay should not be picked. If the DC relay is picked, then a problem obviously exists in the output string to the DC relay. However, if either the DCF or DCP flag is always set in the computer, then the problem is not with the output circuit, but possibly a problem with the door lock circuitry. If the doors are truly physically locked, inspecting the DLK flag in the computer would be wise. If the flag is not set in the computer, then there is obviously a fault in the input circuit from the door lock input. A simple inspection of the computer's Diagnostic mode will substantially narrow down the cause of the problem.

6.3 CALL LOGIC

6.3.1 NORMAL OPERATION

In the MCE call input structure, calls are input to the system by grounding the appropriate call input, as labeled on the HC-PCI/O board (with more than four floors, both the HC-PCI/O board and one or more $\mathrm{HC}-\mathrm{Cl} / \mathrm{O}-\mathrm{E}$ Call boards). The act of physically grounding the call input terminal will illuminate the corresponding call indicator LED on the call board. Latching of the call by the computer (recognition and acceptance) will cause the indicator to remain illuminated on the board. Cancellation of the call will cause the indicator to turn off. With the MCE call input/output structure, the single input/output terminal on the $\mathrm{HC}-\mathrm{PCI} / \mathrm{O}$ (or $\mathrm{HC}-\mathrm{Cl} / \mathrm{O}-\mathrm{E}$) board will accept a call input from the call fixture and serves as the output terminal which illuminates the call fixture to show registration of the call. This means that the field wiring is identical to that which would be used for most standard relay controllers.

Calls may be prevented from latching by the computer in certain circumstances. If none of the car calls are allowed to be registered, the computer may be purposely preventing these calls from being registered. When the computer prevents car call registration, it sets (turns on) the Car Call Disconnect (CCD) flag for that car. Inspection of this flag using Diagnostic mode will show if it is the computer that is preventing the registration of these calls. If the CCD flag is set
(on), the reason for this CCD condition must be discovered. There are many reasons for a CCD condition: Fire Service, Motor Limit Timer elapsed condition, bottom or top floor demand, etc.

A corresponding flag exists for hall call registration prevention. The computer may detect conditions for preventing hall calls from being registered, and will set the Hall Call Disconnect (HCDX) flag. This is a system flag (as opposed to a per car flag), but is available for viewing in Diagnostic mode along with the car operating flags. There are also many reasons for the computer to reject hall call registration: Fire Service, a hall call bus problem, no available cars in service to respond to hall calls, etc.

It should also be mentioned that if a call circuit becomes damaged or stays on due to a stuck pushbutton, the elevator will release itself from the stuck call automatically. It will probably return there later, but will again release itself automatically, thereby allowing continued service in the building.

6.3.2 PREPARATION FOR TROUBLESHOOTING CALL CIRCUITS

Review Section 5.5 (External Memory mode) of this manual. Then, look at Table 5.7. It shows where to look up the calls in the computer memory (addresses 0140 through 015F). By looking at this memory, it is possible to see if a particular call is being recognized by the computer.

Prepare a jumper with one end connected to terminal \#1 which is the same as ground (subplate is grounded), then use the other end to enter the call by grounding the call terminal in question.

6.3.3 TROUBLESHOOTING THE CALL CIRCUITS

1. Once the wires have been disconnected from the call input terminal, the system should be turned ON and in a normal running configuration. Use Diagnostic mode on the computer as described previously to check the status of the HCDX flag and CCD flag. If they are ON, they will shut OFF hall calls and car calls respectively.

NOTE: If it appears that there is a problem with a call, disconnect the field wire (or wires) from that call terminal in order to find out if the problem is on the board or out in the field. The calls can be disconnected by unplugging the terminals or by removing individual wires. If the individual field wire is disconnected, lightly tighten the screw on the terminal. If the screw is loose while trying to ground the terminal using a jumper, contact may not be made.
2. If HCDX and CCD are normal (or OFF), take a meter with a high input impedance (such as a good digital meter) and check the voltage on the call terminal in question. Depending on the voltage that the call circuits were set up for, the reading should be approximately the voltage on the call terminal called for (or up to 15% less). If the voltage is lower than what is specified, and the call terminal is on an HC-CI/O-E board, turn OFF the power and remove the resistor-fuse associated with the call terminal (i.e., if the call terminal is the fifth one from the bottom, remove the fifth resistor-fuse from the bottom). Turn the power back ON. The reading should be the voltage as discussed above. Note: the HC-PCI/O board does not have these resistor-fuses.

NOTE: The resistor-fuse is an assembly made up of a 10 Volt zener diode and a 22 ohm $1 / 4$ Watt resistor.
3. If the job has more than four floors, the controller will include at least one $\mathrm{HC}-\mathrm{Cl} / \mathrm{O}-\mathrm{E}$ Call Input/Output board. If the problem terminal is on this board and the necessary voltage does not read on the terminal, make sure the jumper plug (or header) is in position on the Call board. The jumper plug socket is on the right-hand side of the Call board near the call indicators. If a Call board is replaced, this jumper plug must always be transferred to the new board and stay in the same position. If this plug is not installed, any calls on the new board may become registered if the field wiring is not connected, so make sure the jumper plug is in place (see Figure 6.6).
4. For both the $\mathrm{HC}-\mathrm{PCl} / \mathrm{O}$ board and the $\mathrm{HC}-\mathrm{CI} / \mathrm{O}-\mathrm{E}$ board(s), make sure that the correct voltage is coming into the terminals on the board marked PS1, PS2, and PS3. Note that there may be power on all three of these terminals, only two, or at least one, depending on the type of calls on the board.
5. Once the proper voltage is on the call terminal in question, use External Memory mode and Table 5.6 to examine the call in the computer memory. The call should not be ON. If it is, reset the computer for that car. Let the car find itself or run it to a terminal landing to make sure the CCD flag is turned OFF. If the resistor-fuse has been removed (if necessary), the field wires disconnected, HCDX and CCD both OFF, and the proper voltage exists on the call terminal, the call should not be registered. Shorting the call terminal to terminal 1 (or ground) should register the call in the computer according to External Memory mode. This does not mean the call registered light on the Call board will work correctly. If the call does not register and cancel under the conditions mentioned in this step, then a condition exists on the board that cannot be corrected in the field and the board should be replaced.
6. If the call works correctly in the previous step, and it does not register, and the board is not arranged for neon indicator lamps in the fixtures, the indicator for that call on the board will glow dimly. If the board is arranged for neon indicators, the call indicator on the board will not glow. In this case, a dim glow indicates that the incandescent bulb in the fixture is burned out (when the call has the resistor-fuse plugged in and the field wire connected normally).
7. With a known good resistor-fuse plugged into the proper call position, check to see that the indicator on the Call board works correctly (glows brightly when the call is registered and glows dimly, or not at all, when the call is not registered). If the call indicator burns brightly when the resistor-fuse is plugged in and shows no change in brightness whether the call is registered or not, then there is a bad triac or triac driver transistor. The triacs are plug-in types and can be easily replaced. Usually, if a triac has failed, it will measure as a short circuit between the metal base and terminal 1 with the power disconnected and the field wire removed. If the Call board is not in the system, check for a short circuit between the metal base of the triac to any pad area around a mounting screw hole. On the HC-CI/O-E board, the bottom most triac corresponds to the bottom most terminal, and terminals and triacs are corresponding from there on up (see Figure 6.6). On the $\mathrm{HC}-\mathrm{PCl} / \mathrm{O}$ board, the triacs are labeled the same as the call terminals (see Figure 6.1).
8. If the call has passed all of the previous tests, then it should be working properly while the field wires are not attached. Before reconnecting the field wires, jumper the wire (or wires) to terminal 1 and go out to that hall or car call push-button and press it. If a fuse blows, then a field wiring problem exists. If everything seems okay, then connect the call wires and test it. If connecting the call wires causes a problem, the board may have again been damaged. In any event, once the board checks out okay, any other problems will probably be field wiring problems and should be investigated.

Bottom most CallTerminal*

Jumper Plug If a call board is replaced, the jumper plug must be transferred to the new board and the notch orientation must stay the same

Bottom most Resistor Fuse*

Bottom most
Triac*
Watch out for polarity when replacing

* The Triacs, Resistor Fuses and Call Terminals are layed out in the same sequence as shown on the Call Label.

TROUBLESHOOTING THE CALL CIRCUITS

NOTE: Call terminal voltage must be $\geq 85 \%$ of call supply voltage. Example: If supply is 100 VAC , terminal voltage may be 85 VAC to 100 VAC . 80 VAC is insufficient.
If there is a problem with a call, first disconnect the field wire or wires from that call terminal to determine if the problem is on the board or in the hoistway wiring or fixtures. Disconnect the calls by unplugging the terminals, or removing individual wires. If the individual field wire is disconnected, lightly tighten the screw terminal since it may not make contact if an attempt is made to ground the terminal using a jumper when the screw on the terminal is loose.

Problem	Recommended steps to resolve the problem
Call Terminal Voltage is insufficient	1. Turn OFF the power and remove the resistor fuse associated with that terminal. 2. Turn ON the power and check terminal voltage again. 3. If no voltage is present on the terminal: a. Check the jumper plug (header) on the HC-Cl/O Call board. The jumper plug socket is located on the right hand side near the call indicators. If a Call board is replaced, this jumper plug must be transferred to the new board and stay in the same board position (more than one Call board on the controller). b. Verify that the correct incoming power is on terminals marked PS1, PS2 and PS3. NOTE: Power will exist on at least one and possibly more of these terminals.
Call LED is ON even though the field wire is removed	1. Reset the computer (Computer Reset pushbutton on Swing Panel). 2. Run the car to the nearest landing to reset PI. 3. It may be necessary to reset the computer in the Group Supervisor (other car in a duplex system) in order to reset a latched hall call. 4. If the call does not cancel under these conditions--replace the call board
Cannot register a hall call at the call board	To discover whether the problem is with the call board or the field wiring: 1. First remove the resistor fuse and disconnect the field wire(s). 2. Verify that the HCDD, Hall Call Disconnect Computer Variable Flag is OFF (Address 2C, LED 6). For PTC or PHC controllers, verify that the HCDX flag is OFF (address 2C, LED4). 3. Verify that there is proper voltage on the call terminal. 4. Register a call by shorting the call terminal to terminal 1 or GND and verify with EOD. 5. If the call does not register under these conditions--replace the call board. 6. If the call circuit works with field wires removed, before connecting wires, jumper the wire(s) to ground or terminal 1 and press the call pushbutton. If a fuse blows, there is a field wiring problem. If connecting the call wires causes a problem, the call board may be damaged.
Call remains latched even though the car arrives at that landing	Remove the associated resistor fuse. If call cancels, replace the bad resistor fuse.

TROUBLESHOOTING THE CALL INDICATORS

NOTE: Before troubleshooting the call indicators, ensure that the call circuit is working correctly, the field wires are connected and the resistor fuses are plugged in. If the board is arranged for neon (or LED) indicators (HC-CI/O -N board), the board indicators are not affected by the fixture bulbs.
When working correctly, a call indicator glows brightly when a call is registered and glows dimly or not at all when a call is not registered.

Problem	Recommended steps to resolve the problem
With a call registered, the Call Indicator is dimly lit (Call Board is HC-CI/O)	Incandescent bulb in the fixture for the call is burned out or missing. Replace the bulb.
Indicator glows bright whether or not there is a call registered	Bad triac or triac driver transistor. Check triac with power OFF and field wire removed. Failed triac usually measures a short circuit from the metal back (collector) to terminal 1. If board is not in system, measure short between metal back and pad area around mounting hole. Be careful, the metal back of the triac is connected to AC when power is ON. NOTE: bottom triac corresponds to bottom terminal.

6.4 CAR DOES NOT MOVE ON INSPECTION OR AUTOMATIC

If the car does not move, check the following:

1. Relays SAFR1 and SAFR2 will drop and, if the code mandated "cycle tests" function as required, pick back up at the end of every run. This means that after every run the critical relays are dropped out to ensure that no contacts have welded. If a failure of the relays is detected both SAFR1 and SAFR2 will not be allowed to pick. If this is the case, inspect the message scrolling on the MC-PCA-OA-2K display to determine which section of the hardware has failed.

Note: Many of the safety relays that populate the main PC boards (SC-SB2K-H and SC-BAH) are soldered to the board, hence it will be necessary to replace the entire board when any relay fails to operate as intended (manufacturers have yet to provide sockets for the new code mandated force-guided relays).
2. Verify that pilot relay MP, contactors M (Main if present), Y and DEL (if star-delta) pick when the direction relays, UP and DN, are picked). If MP and Y do not pick, check the related circuit (M TRIAC) as shown in the controller drawings. Check for any fault that is displayed on the MC-PCA-OA-2K display before and after picking the direction on Inspection. Also relaysYP and DELP on the SC-SB2K-H board should be picked. If these relays are not picked, check for 120VAC on terminals $9,10,12$ and 20 on the SC-SB2K-H Board. If there is no voltage on these terminals, refer to the controller drawings to find the problem. Note that relays SAFR1and SAFR2 should also be picked.
3. Verify that contactors M (if present), Y and DEL are dropped when the direction is not picked. These relays feed redundancy checking inputs RM, RWYE and RDEL. If these main contactors fail to release as intended the system will be shut down and further operation of the lift will be prevented. Many other relays are monitored (see prints) for proper operation. UP, DN and H are some of the monitored relays. If any of these relays fail a message will be displayed on the LCD display that indicates which relay.
4. If all the functions described in the above steps are working properly and the car still does not move, then verify that the valves are getting voltage applied to the solenoids. This happens at terminals $85,86,87$ and 88 . Check associated wiring to terminals 10, $11,12,13$, etc. All mentioned terminals are located on the SC-SB2K-H board (see Figure 6.2).

6.5 PC BOARD QUICK REFERENCES

FIGURE 6.7 MC-PCA-OA2K Main Computer Board Quick Reference

PTC and PHC Connections

TRACTION					HYDRO						
C8 Input		Resistor	C8 Input		Resistor	C8 Input	Resistor	C8 Input	Resistor		
ASI1	PFLT	R41	ASI5	RUDX1	R46	ASI1	RSTOP	R41	ASI5	RDFV	R46
ASI2	UETS2	R42	ASI6	RUDX2	R45	ASI2	RUSV	R42	ASI6	UNLS	R45
ASI3	DETS2	R48	ASI7	RUDX3	R44	ASI3	RUFV	R48	ASI7	R44	
ASI4	RSTOP	R47	ASI8	RUDX4	R43	ASI4	RDSV	R47	ASI8	R43	

FIGURE 6.12 HC-IPLS IP Landing System Board Quick Reference

6.6 USING THE OPTIONAL CRT FOR TROUBLESHOOTING

6.6.1 GRAPHIC DISPLAY OF ELEVATOR (F3) SCREEN

The F3 screen shows the hoistway graphic display (see Figure 6.9).
a. HOISTWAY GRAPHIC DISPLAY - shows car position, direction arrows, car calls, assigned hall calls and position of the doors.
b. CAR STATUS DISPLAY - This portion of the display describes the current status of the car.

FIGURE 6.13 Graphic Display of Elevator (F3) Screen (Color CRT)

6.6.2 MCE SPECIAL EVENTS CALENDAR ENTRIES (F7-1) SCREEN

Events that could affect car functions are recorded inside the MC-PA computer memory. This data is available to the mechanic for troubleshooting and analysis of the events (see Figure 6.10. The Special Events Calendar logs the following information:

- DATE (month/day)
- TIME (hour/minute)
- EVENT (cause for logging the data, such as; doorlock clipped, stop switch pulled, etc.)
- $\quad \mathrm{Pl}$ (car Pl at the time the data was logged)

Table 6.1 provides a list of Special Events Calendar messages and their definitions.

Esc = Previous Menu

Date	Time	Event	Status	Car	Flr	Miscel.
10-23	02:15	Time Out of Service	Activated	A	2	
10-23	02:20	Door Close Protection	Activated	B	4	
10-23	02:21	Time Out of Service	Deactivated	A	2	
10-23	02:25	Door Close Protection	Deactivated	B	4	
10-23	13:59	Motor Limit Timer	Activated	A	5	
10-24	14:05	Motor Limit Timer	Deactivated	A	5	
10-24	15:43	Excessive Commun. Error				
10-24	08:27	Hospital Service	Activated	A	L	
10-24	08:28	Hospital Service	Deactivated	A	2	
10-25	08:30	Independent Service	Activated	B	2	
10-25	08:31	Independent Service	Deactivated	B	L	

Up/ Dn Arrows: Scroll Page Up/Dn: Previous/Next Page Home/End: 1st/Last page

TABLE 6.1 Special Events Calendar Messages

Bottom Floor Demand	Generated when car comes off of Inspection or when car PI indicates top terminal landing but car is not there. Check top terminal landing slowdown switches and USD input.
Both USD and DSD are Open	Both USD and DSD are simultaneously active (low). Check wiring on terminal switches.
Bus Fuse Blown (2H)	No power exists on the Hall Call Common Bus. Check fuse F4 on group.
Bus Fuse Blown (2)	No power exists on the Car Call Common Bus. Check fuse F4 on car.
Car Out of Svc w/ DLK	Car was delayed from leaving a landing for a significant period of time. Doors were locked. Suspect a malfunction of the running circuits.
Car Out of Svc w/o DLK	Car was delayed from leaving a landing for a significant period of time. Doors were not locked. Suspect an obstruction that has kept the doors from closing, thus preventing the car from leaving the landing.
Communication Loss	Car not communicating with PA. See troubleshooting guide in manual.
DOL Open and DLK Active	Car is shutdown due to unsafe conditions of the DOL and/or DLK sensors. Door Open Limit input (DOL) activated (low) and Door Lock input (DLK), activated (high). Check DOL and DLK inputs.
Door Close Protection	Doors unable to close and lock in specified time. Check door lock string contacts and individual doors for physical obstruction.
Earthquake	Earthquake input (CWI or SSI) activated (high).
Emergency Power	System placed on emergency power. Power removed from EPI input.
Fire Service Main	Main Fire Service input (FRS) activated (low).
Fire Service Alternate	Main Fire Service input (FRS) activated (low) and Alternate Fire Service input (FRA) activated (high).
Fire Service Phase 2	Phase 2 Fire Service input (FCS) activated (high).
Hospital Service	Car assigned to a HOSPITAL EMERGENCY CALL.

TABLE 6.1 Special Events Calendar Messages

Independent Service	Car placed on Independent Service.
Inspection	Hoistway access or car top inspection.
Lost DLK During Run	The DOOR LOCK input was deactivated while the car was traveling through the hoistway.
Motor Limit Timer	Motor stalled due to excessive time to complete run. Put car on inspection then take it off or reset processor. Check Up and Down Sense inputs (UPS and DNS), and generator and motor brushes.
Photo Eye Failure	The PHOTO EYE input has been continuously active for a considerable period of time. Suspect an abnormal blockage of the optical device or failure of the PHOTO EYE input circuit.
Safety String Open	Check on-car and off-car safety devices (e.g. governor overload, over- travel limit switches and car stop switches) and SAF input.
Stop Sw/Safety Relay Ckt	In-Car Stop switch activated or the Safety Relay Circuit opened.
System Out of Service	Car(s) out of service due to Hall Call common bus (2H) failure.
Top Floor Demand	Car Pl indicates bottom terminal landing but car is not there. Check bottom terminal landing slowdown switches and DSD input.
Time Out of Service	Elevator abnormally delayed in reaching destination in response to a call demand. Doors cannot close and lock or motor stalled.
Valve Limit Timer	Down detection energized for excessive amount of time. Check jack packing and down section of valve assembly.

6.7 USING THE MLT / VLT DATA TRAP

The MLT / VLT "data trap" records many of the controller's operation "flags" at the moment the MLT or VLT occurs. This allows you to see what flags led up to the fault. Note: Direction must be on (input UPS) for the adjustable time set via parameter MOTOR LIMIT TIMER (1-6 minutes) before MLT will occur. Direction must be on (input DNS) for the adjustable time set via parameter VALVE LIMIT TIMER (1-6 minutes) before VLT will occur.

Once an MLT or VLT shuts down the car, use these steps to look at the stored flags.

1. Do not reset the computer as this will clear the data trap on software version 5.19.0001 or earlier. To return the car to service and not harm the data, simply toggle the relay panel inspection switch from OFF to ON and back to OFF.

Note: On software version 5.19.0002* or later, the data is not cleared on power up or reset. The data is overwritten each time a new MLT occurs. However, the data may be cleared and the MLT counter reset by placing the F1, F2, F7 and F8 switches in the up position.
2. On the MC-PCA board place the F2 switch up (ON) to select External Memory. All other switches should be down (OFF). The LCD display shows the default address, DA. 0100 (address 0100) followed by the eight memory bits at that location.

पा母ण

3. Use the DATA TRAP MEMORY CHART to determine the addresses where the saved data is stored. The section in the Controller Installation Manual titled EXTERNAL MEMORY MODE provides a complete description of how to use the External Memory Mode. Briefly, use the N pushbutton to select the digit to be changed (digit blinks on and off). Press + or - to change the digit.
4. Record the data displayed on the LCD for all rows shown on the chart. It helps if you have a few photocopies of the chart. Simply mark the positions in the chart that are shown as a " 1 " on the LCD display. Addresses 0480 thru 0493 contain car status flags. Address 0494 contains the car's position indicator value at the instant the MLT or VLT condition occurred and address 0495 contains the MLT counter (ver 5.19.0002 or later). Only the labeled positions are important to mark.
5. Once all of the addresses have been marked you may reset the computer to clear the recorded memory area (software versions 5.19.0001* or earlier).
6. Use the recorded values and the timer logic flowcharts to help determine the cause of the problem. Then call MCE for assistance if any is needed.

* Note: To determine the software version, place switch F8 up (ON) with all other function switches down (OFF).

```
FTHC D
ver" T06.be.bube
```

PHC HYDRO DATA TRAP MEMORY CHART

	DIAGNOSTIC INDICATORS							
	8	7	6	5	4	3	2	1
0480	DOLM	PHE	DZ	DOL	DBC	DOB	GEU	GED
0481	TFA	DC	UC	$C C$	NDS	FDC	DHO	DOI
0482	DCFN	DCP	DOF	LOT	GHT	HCT	CCT	SDT
0483	DOC	SE	DCLC	CSB	DCC	NUDG	NUGBPS	DSHT
0484	VCl	FRA	FCS	FRS	DNS D	UPS	STD	STU
0485	SCE	FCCC	FCHLD	HLI	VCA	EXMLT	FWI	PIC
0486	LFP	UFP	NYDS	CCH	DIN	DPR	GTDE	GTUE
0487	HD	FCOFF	DHLD	IND	IN	DLKS	$\underset{\bigcirc}{\text { MLTP }}$	MLTDO
0488	$\stackrel{\text { LLW }}{\bigcirc}$	$\stackrel{\text { DLK }}{\bigcirc}$	DDF	SUD	ISR	INCF	REAR	LLI
0489	DNDO	LD	DPD	DDP	UPDO	LU	UPD	UDP
048A	DMD	DCB	UCB	CCB	DMU	DCA	UCA	CCA
048B	TOS	$\stackrel{\text { MLT }}{\bigcirc}$	VLT	SST	H	HSEL	DSH	RUN
048C	DZP	STC	SAF	HCR	HCDX	CCD	ISV	ISRT
048D	TEMPB	UFQ	DZORDZ	FCSM	FRM	FRSS	FRAS	FRC
048E	SD	SDA	DSD	BFD	SU	SUA	USD	TFD
048F	FRBYP	FRON	HYD1_TRCO	ECC	CD	ECRN	EPR	PFG
0490	CODE4	CODE2	CODE3	FREE	DEADZ	DHLD1	PH1	NDGF
0491	CTLDOT	CTLF	CTL	$\stackrel{\text { ALV }}{\bigcirc}$	EPSTP	AUTO	EPRUN	EPI
0492	FRMM	OFR	WLDI	WLD	CCMEM	OLW	OVLM	OVL
0493	API	SAB	TEST	DHENDR	DHEND	CTST	HOSPH2	HOSP
0494	PI	PI						
0495	LOS	\bigcirc	\bigcirc	\bigcirc	MLT Counter	MLT Counter	MLT Counter	MLT Counter

Note 1: In software version 5.19 .0001 and earlier, LOS is located at address 0495 bit 2.
Note 2: In software version 5.19.0001 and earlier, TRAPLOCK is located at address 0495 bit 1 and is cleared only when the controller is reset.

6.8 ASME A17.1-2000 FAULT TROUBLESHOOTING TABLES

The ASME A17.1-2000 Fault Troubleshooting data is stored in External Memory at the Hex addresses shown in the following tables. Refer to Section 5.5 External Memory Mode for additional information. External Memory Mode is initiated by placing the F2 switch in the up position with all other switches in the down position.

FUNCTION SWITCHES
F8 F7 F6 F5 F4 F3 F2 F1

External Memory mode

The N pushbutton advances of the computer memory address, which is displayed on the second line of the LCD. For example, for this display, pressing the N pushbutton once (hold it for $1-2$ seconds) will cause the 1 in the address 1234 to begin blinking. By continuing to press the N pushbutton, the 2 in the address 1234 will begin to blink. The cycle will continue while the \boldsymbol{N} pushbutton is being pressed. Once the digit needed to be changed is blinking, the address

 can then be modified using the + or - pushbuttons.

The S pushbutton ends the ability to change the address by stopping the digit from blinking. If the S pushbutton is not pressed, the selected digit will stop blinking automatically after a period of about 20 seconds.

The data (8 digits) that corresponds to the memory address is displayed to the right of the address. This display will change as the memory address changes.

6.8.1 ASME A17.1-2000 REDUNDANCY FAULT ESTABLISHED MAP

TABLE 6.2 ASME A17.1-2000 Redundancy Fault Established Map

HEX ADDRESS	FAULT							
0E90	--	RESBYP	RSAFR	RSTOP	--	SAFH	SAFC	RCT
0E91	RFR_FLKR	RFR_STK	--	--	--	--	--	$2 B I$
0E92	INUP	IN	INMR	ACCI	INICI	INCTI	--	--
0E93	--	RCD	DLK	HDB	CDB	HD	CD	INDN
0E94	RACC1	RIN2	RIN1	RLULD	DZX	RDZX	RDZ	--
0E95	--	--	--	--	--	RCTIC	RTBAB	RACC2
0E96	RUP	DNS	DNL	UNL	UPS	DNDIR	UPDIR	--
0E97	--	MPSAF	ESBYP	TEST	DCL	DPM	RH	RDN
0E98	--	--	--	RHDB	H	--	--	--
0E9A	DZRX	RDZR	RHDR	RCDR	HDBR	CDBR	HDR	CDR
0E9B	--	--	--	RUDX4	RUDX3	RHDBR	DCLR	DPMR
0E9C	RM3	RDEL2	RWYE2	RM2	RDEL1	RWYE1	RM1	RPM
0E9D	RUSV	UTS	UNLS	RPLT	DFV	UFV	RDEL3	RWYE3
0E9E				ROFRT	RSYNC	RDFV	RUFV	RDSV
0E9F	--	CT	ESBYP	--	$4 B U S ~$	RSAFR	--	--

6.8.2 ASME A17.1-2000 REDUNDANCY FAULT DATA TRAP (F2 is UP)

This Data Trap records the state of the Redundancy Fault Established Map and the SC-HDIO Board Input Map when the MPSAF Output is turned OFF, indicated by the SAFR1 Relay.

 RHD DLK HDB CD INDN

Refer to Section 5.5 for additional information on the External Memory mode. To access the following data the F2 Switch is up. Example: Alphanumeric display at left indicates that at hex address 0EB3 the following faults are $O N$ (indicated by a 1 in that position): RHD, DLK, HDB, CD and INDN.

TABLE 6.3 Redundancy Fault Established Data Trap

HEX ADDRESS	FAULT DATA (1 $\mathbf{=} \mathbf{O N}, \mathbf{0}=\mathbf{O F F})$							
0EB0	--	RESBYP	RSAFR	RSTOP	--	SAFH	SAFC	RCT
0EB1	RFR_FLKR	RFR_STK	--	--	--	--	--	2 BI
0EB2	INUP	IN	INMR	ACCI	INICI	INCTI	--	RBK
0EB3	--	RCD	DLK	HDB	CDB	HD	CD	INDN
0EB4	RACC1	RIN2	RIN1	RLULD	DZX	RDZX	RDZ	RPT
0EB5	--	--	--	--	--	RCTIC	RTBAB	RACC2
0EB6	RUP	DNS	DNL	UNL	UPS	DNDIR	UPDIR	ILO2
0EB7	--	MPSAF	ESBYP	TEST	DCL	DPM	RH	RDN
0EB8	--	--	--	RHDB	H	--	--	--
0EB9	--	--	--	--	--	--	--	--
0EBA	DZRX	RDZR	RHDR	RCDR	HDBR	CDBR	HDR	CDR
0EBB	--	--	--	RUDX4	RUDX3	RHDBR	DCLR	DPMR
0EBC	RM3	RDEL2	RWYE2	RM2	RDEL1	RWYE1	RM1	RPM
0EBD	RUSV	UTS	UNLS	RPLT	DFV	UFV	RDEL3	RWYE3
0EBE				ROFRT	RSYNC	RDFV	RUFV	RDSV
0EBF		CT	ESBYP	--	4BUS	RSAFR	--	--

6.8.3 ASME A17.1-2000 SC-HDIO BOARD INPUT DATA TRAP

TABLE 6.4 ASME A17.1-2000 SC-HDIO Board Input Data Trap

HEX ADDRESS	FAULT DATA (1 $\mathbf{=}$ ON, $\mathbf{0}=\mathbf{O F F})$							
0EC0	2BI	RCT	RESBYP	RSAFR	STOP	SAFC	SAFH	--
0EC1	INUP	INICI	INCTI	RDEL1	RWYE1	RFR	DZX	RM1
0EC2	--	--	--	RCD	CD	INDN	INMR	HD
0EC3	RUP	DNL	UNL	RIN2	RIN1	RLULD	RDZ	--
0EC4	FRSA	FRSM	FRBYP	FCCC	FCOFF	TEST	RH	RDN
0EC5	--	--	C5.4	C5.3	DFV	UFV	UTSRL	DTSRL
0EC6	HDBO	HDB	CDBO	CDB	ACCI	--	--	--
0EC7	--	--	--	ROFRT	RCTIC	RTBAB	RACC2	RACC1
0EC8	--	--	RUSV	RSTOP	--	--	--	UPDIR
0EC9	CDBOR	CDBR	CDR	DZRX	RHDB	--	--	DNDIR
0ECA	A2KBP	RHDR	RCDR	RDZR	RHDBR	HDBOR	HDBR	HDR
0ECB	--	--	RUFV	RDSV	UNLS	ASI8	ASI7	RDFV

6.8.4 RAW ASME A17.1-2000 SC-HDIO BOARD INPUT MAP

The RAW data for the ASME A17.1-2000 HDIO Board Input Map table that follows, is data that has not been modified by the controller. To see these inputs select the address in External Memory mode (refer to Section 5.5)

FUNCTION SWITCHES
F8 F7 F6 F5 F4 F3 F2 F1

External Memory mode

TABLE 6.5 RAW ASME A17.1-2000 SC-HDIO Board Input Map

HEX ADDRESS	INPUTS							
0C60	2BI	RCT	RESBYP	RSAFR	STOP	SAFC	SAFH	--
0C61	INUP	INICI	INCTI	RDEL1	RWYE1	RFR	DZX	RM1
0C62	--	--	--	RCD	CD	INDN	INMR	HD
0C63	RUP	DNL	UNL	RIN2	RIN1	RLULD	RDZ	--
0C64	FRSA	FRSM	FRBYP	FCCC	FCOFF	TEST	RH	RDN
0C65	--	--	--	--	DFV	UFV	UTSRL	DTSRL
0C66	HDBO	HDB	CDBO	CDB	ACCI	--	--	--
0C67	--	--	--	ROFRT	RCTIC	RTBAB	RACC2	RACC1
0C68	--	--	RUSV	RSTOP	--	--	--	UPDIR
0C69	CDBOR	CDBR	CDR	DZRX	RHDB	--	--	DNDIR
0C6A	A2KBP	RHDR	RCDR	RDZR	RHDBR	HDBOR	HDBR	HDR
0C6B	--	--	RUFV	RDSV	UNLS	ASI8	ASI7	RDFV

6.8.5 ADDITIONAL FLAGS AND VARIABLES ADDED FOR ANSI 2000

TABLE 6.6 Flags and Variables Added for ASME A17.1-2000

HEX ADDRESS	INPUTS / OUTPUTS							
ODB0	XTN1	UTS1	RDEL1	DEL1	RWYE1	WYE1	RM1	M1
ODB1	XTN2	UTS2	RDEL2	DEL2	RWYE2	WYE2	RM2	M2
0DB2	XTN3	UTS3	RDEL3	DEL3	RWYE3	WYE3	RM3	M3
0DB3	ABORT_PUMP	SS_UTSF	SS_FAIL	SSFN	VEU	FUD	VC	RPM
0DB7								CUR_PUMP
ODB8			FS3	FS2	FS1	SS3	SS2	SS1
ODBA					VC_T	VC_M	RPM_M	RPLT

TABLE 6.7 Definitions for Flags and Variables in Table 6.6

ABORT_PUMP	Failed to Activate. Abort Start-Up Sequence	RWYE1	WYE Redundancy, Pump \#1
CUR_PUMP	Current Pump Selected for Start-up Sequence	RWYE2	WYE Redundancy, Pump \#2
DEL1	DEL, Pump \#1	RWYE3	WYE Redundancy, Pump \#3
DEL2	DEL, Pump \#2	SS_UTSF	Solid State Motor Up To Speed Failure
DEL3	DEL, Pump \#3	SS1	Successful Start, Pump \#1
FS1	Failed Start, Pump \#1	SS2	Successful Start, Pump \#2
FS2	Failed Start, Pump \#2	SS3	Successful Start, Pump \#3
FS3	Failed Start, Pump \#3	SS_FAIL	Solid State Starter Failure
FUD	Fast Up Down Enable Output	SSFN	Soft Stop Function Active
M1	M Contactor, Pump \#1	UTS1	Up to Speed for Starter 1
M2	M Contactor, Pump \#2	UTS2	Up to Speed for Starter 1
M3	M Contactor, Pump \#3	UTS3	Up to Speed for Starter 1
OXTN_CTR	Y - DEL Contactor Open Transition Counter	VC	Viscosity Output
RDEL1	DEL Redundancy, Pump \#1	VC_T	Viscosity Timed
RDEL2	DEL Redundancy, Pump \#2	VC_M	Viscosity Memory
RDEL3	DEL Redundancy, Pump \#3	VEU	Valve Enable Up Output
RM1	M Contactor Redundancy, Pump \#1	WYE1	WYE, Pump \#1
RM2	M Contactor Redundancy, Pump \#2	WYE2	WYE, Pump \#2
RM3	M Contactor Redundancy, Pump \#3	WYE3	WYE, Pump \#3
RPLT	PLT Relay Redundancy	XTN1	Y-DEL Contactor Open Transition Flag, Pump \#1
RPM	Run Pump / Motor Input	XTN2	Y-DEL Contactor Open Transition Flag, Pump \#2
RPM_M	Run Pump Motor Memory	XTN3	Y-DEL Contactor Open Transition Flag, Pump \#3

6.8.6 FORMATTED ASME A17.1-2000 SC-HDIO BOARD INPUT / OUTPUT MAP

The Formatted ASME A17.1-2000 SC-HDIO Board Input / Output Map is stored in External Memory at the Hex addresses shown in Table 6.11. Refer to Section 5.5 External Memory Mode for detailed information. External Memory Mode is initiated by placing the F2 switch in the up position with all other switches in the down position.

FUNCTION SWITCHES
F8 F7 F6 F5
F4 F3 F2 F1

External Memory mode

TABLE $6.8 \quad$ Formatted SC-HDIO Board Input / Output Map

HEX ADDRESS	INPUTS / OUTPUTS								
0C4F	2_BI_M	MPSAF	STOP	SAFC	SAFH		RSAFR	$2 _$BI	
0C50	TEST	INDN	INUP	RIN2	RIN1	INMR	INICI	INCTI	
0C51	--	UPDO_M	INUP_M	RTBAB	RACC2	RACC1	ACCI	RCTIC	
0C52	--	--	--	--	DFV	UFV	UTSRL	DTSRL	
0C53	HDBO	HDB	CDBO	CDB	--	RCD	HD	CD	
0C54	--	FIR1	FWL	FRSA	FRSM	FRBYP	FCCC	FCOFF	
0C56	RESBYP	ESBYP	-	--	--	--	--	--	
0C58	DNDIR	UPDIR	--	RUP_M	RDN	RUP	DNL	UNL	
0C59	RFR	RFRM	A2KBP	CT	RCT	RH	RLULD	RDZ	
0C5A	HDBOR	HDBR	CDBOR	CDBR	RHDR	RCDR	HDR	CDR	
0C5B	--	--	RHDBR	RHDB	RDZR	DZRX	ROFRT	DZX	
0C5C	ASI8	ASI7	UNLS	RDFV	RDSV	RUFV	RUSV	RSTOP	

TABLE 6.9 Mnemonic Definitions for Inputs and Outputs in Table 6.8

A2KBP	ANSI 2000 Bypass Input	RDN	Redundancy Down Relay
ACCI	Inspection Access	RDFV	Redundancy Down Fast Valve
ASI7	ANSI Spare Input 7	RDSV	Redundancy Down Slow Valve
ASI8	ANSI Spare Input 8	RDZ	Redundancy Door Zone Relay
CD	Car Door	RDZR	Redundancy Door Zone Rear Auxiliary Relay
CDB	Car Door Bypass Switch - Bypass Position	RDZX	Redundancy Door Zone Auxiliary Relay
CDBO	Car Door Bypass Switch - Off Position	RESBYP	Redundancy Emergency Stop Switch Bypass Relay
CDBOR	Car Door Rear Bypass Switch - Off Position	ROFRT	Redundancy One Floor Run Terminal
CDBR	Car Door Rear Bypass Switch - Bypass Position	RFR	Redundancy Fault Reset
CDR	Car Door Rear	RFRM	Redundancy Fault Reset Memory
CT	Cycle Test Output	RH	Redundancy High Speed Relay
DFV	Down Final Valve	RHDB	Redundancy Hoistway Door Bypass Relay
DNDIR	Down Direction Detected	RHDBR	Redundancy Hoistway Door Bypass Rear Relay
DNL	Down Normal Limit	RHDR	Redundancy Hoistway Door Rear Relay
DTSRL	Down Terminal Speed Reducing Limit	RIN1	Redundancy Inspection Relay \#1
DZRX	Door Zone Rear Auxiliary	RIN2	Redundancy Inspection Relay \#2
DZX	Door Zone Auxiliary	RLULD	Redundancy Level Up / Level Down Relays
ESBYP	Emergency Stop Switch Bypass	RMR	Redundancy Motor Relay
FCCC	Fire Phase 2 - Car Call Cancel	RPLT	Redundancy Pilot Relay
FCOFF	Fire Phase 2 Switch - Off position	RSAFR	Redundancy Safety Relay Input
FIR1	Fire Phase 1 Active - Main or Alternate	RSTOP	Redundancy Stop Input
FRBYP	Fire Phase 1 Switch - Bypass Position	RSYNC	Redundancy Sync Relay
FRSA	Fire Phase 1-MR / HTW Sensor - Alternate Recall	RTBAB	Redundancy Top / Bottom Access Buttons Relay
FRSM	Fire Phase 1 - MR / HTW Sensor - Main Recall	RUDX1	Redundancy Up/Down Auxiliary \#1
FWL	Fire Warning Light	RUDX2	Redundancy Up/Down Auxiliary \#2
GOV	Governor Switch Input	RUDX3	Redundancy Up/Down Auxiliary \#3
HD	Hoistway Door	RUDX4	Redundancy Up/Down Auxiliary \#4
HDB	Hoistway Door Bypass Switch - Bypass Position	RUP	Redundancy Up Relay
HDBO	Hoistway Door Bypass Switch - Off Position	RUP_M	Redundancy Up Relay Memory
HDBOR	Hoistway Door Rear Bypass Switch - Off Position	RUFV	Redundancy Up Fast Valve
HDBR	Hoistway Door Rear Bypass Switch - Bypass Position	RUSV	Redundancy Up Slow Valve
HDR	Hoistway Door Rear	SAFC	Safety Circuit - Car
INCTI	Inspection - Car Top Inspection	SAFH	Safety Circuit - Hoistway
INDN	Inspection - Down Input	SSI	Seismic Switch Input
INICI	Inspection - In Car Inspection	STOP	Stop Switch Input
INMR	Inspection - Machine Room	TEST	Test Input
INUP	Inspection - Up Input	TWO_BI	2 Bus Input
INUP_M	Inspection Up Memory	TWO_BI_M	2 Bus Input Memory
MPSAF	Main Processor - Safety Output	UFV	Up Final Valve
RACC1	Redundancy Access Inspection Relay \#1	UNL	Up Normal Limit
RACC2	Redundancy Access Inspection Relay \#2	UNLS	Up Normal Limit Switch
RCD	Redundancy Car Door Relay	UPDIR	Up Direction Detected
RCDR	Redundancy Car Door Rear Relay	UPDO_M	Up Direction Output Memory
RCT	Redundancy CT Relay	UTSRL	Up Terminal Speed Reducing Limit
RCTIC	Redundancy Car Top / In Car Inspection Relay		

6.9 STARTERS - SEQUENCE OF OPERATION FLOWCHARTS

FIGURE 6.15 WYE - DELTA Starter Sequence of Operation

SEQUENCE OF OPERATION for WYE - DELTA HYDRAULIC STARTER

SEQUENCE OF OPERATION for ATL HYDRAULIC STARTER

H:Document on Endevor/Flowchart/HydroATLStarter.flo rev 8/22/02

HYDRO WITH SOLID-STATE STARTER SEQUENCE OF OPERATION

H:Document on Endevor/Flowchart/HydroSSstarter.flo rev 8/22/02

DN: 5267 R0

APPENDIX

APPENDIX A ORIGINAL PROGRAMMED VALUES AND THE RECORD OF CHANGES

OPTIONS	MCE VALUES	NEW VALUES
BASIC FEATURES		
Simplex or Duplex?	_ Simplex ___ Duplex	Simplex ___ Duplex
Operation:	\qquad Sel. Coll. \qquad Single Button \qquad Single Auto PB	\qquad Sel. Coll. \qquad Single Button \qquad Single Auto PB
Top Landing Served (Car A)?		
Car Doors are Walk-Thru (Car A)?	\qquad Yes \qquad No	\qquad Yes \qquad No
Car Serves Frnt/FIr (Car A)?	1234567810111213141516171819 20212223242526272829303132	$\begin{aligned} & 123456781011121314151617181920 \\ & 212223242526272829303132 \end{aligned}$
Car Serves Rear/FIr (Car A)?	1234567810111213141516171819 20212223242526272829303132	$\begin{aligned} & 123456781011121314151617181920 \\ & 212223242526272829303132 \end{aligned}$
Top Landing Served (Car B)?		
Car Doors are Walk-Thru (Car B)?	$\ldots \text { Yes } \quad \text { No }$	\ldots Yes ___ No
Car Serves Frnt/FIr (Car B)?	1234567810111213141516171819 20212223242526272829303132	123456781011121314151617181920 212223242526272829303132
Car Serves Rear/FIr (Car B)?	1234567810111213141516171819 20212223242526272829303132	123456781011121314151617181920 212223242526272829303132
Parking Floor		
Alt. Parking Floor		
Secondary Park Floor		
Lobby Floor		
Car Identifier	Set first car to A, next car to B	Set first car to A, next car to B
Number of IOX Boards:	- Valid range is 0-4.	- Valid range is 0-4.
Number of 14O Boards:	Valid range is 0-3.	_ Valid range is 0-3.
Number of AIOX Boards:	Valid range is 0-1.	Valid range is 0-1.
FIRE SERVICE		
Fire Service Operation?	__Yes ___ No	Yes _ No
Fire Phase 1 Main Floor		
Fire Phase 1 Alt. Floor		
Fire Service Code		
Fire Phase 1, ${ }^{\text {nd }}$ Alt Landing		
Bypass Stop Sw. on Phase 1?	Yes __ No	Yes \quad No
Honeywell Fire Operation?	__ Yes __ No	__Yes No
NYC Fire Phase 2 w/ ANSI 89?	__Yes __ No	__Yes __ No
White Plains, NY Fire Code?	___ Yes __ No	___ Yes __ No
Mass 524 CMR Fire Code?	Yes _ No	Yes No
DOOR OPERATION		
Nudging?	Yes __ No	___ Yes ___ No
Stuck Photo Eye Protection?	__ Yes __ No	__ Yes __ No
Sequential Door Oper.(F/R)?	Yes _ No	__Yes _ No
Car Call Cancels Door Time?	\ldots Yes ___ No	__Yes __ No
Nudging During Fire Phase 1?	__ Yes __ No	__ Yes __ No
Retiring Cam Option?	__ Yes __ No	__ Yes __ No
Pre-Opening?	___ Yes __ No	___ Yes __ No
Mechanical Safety Edge?	Yes __ No	__ Yes __ No
Nudging Output/Buzzer Only?	Yes __ No	_ Yes __ No
D.C.B. Cancels Door Time?	Yes _ No	Yes _ No
Leave Door Open on PTI/ESS?	\ldots Yes ___ No	\ldots Yes ___ No
Nudging During Fire Phase 2?	\ldots Yes __ No	\ldots Yes __ No

OPTIONS	MCE VALUES	NEW VALUES
Dir. Preference Until DLK?	Yes ___ No	Yes __ No
Fully Manual Doors?	Yes __ No	Yes ___ No
Cont. D.C.B. to Close Doors?	Yes _ No	Yes _ No
Cont. D.C.B. for Fire Phase 1?	Yes __ No	Yes __ No
Moment. D.O.B. door opening? Moment D.O.B. for: Moment D.O.B. for:	Front Hall Calls Rear Car Calls__Both Calls All Calls	Front Hall Calls No Rear Car Calls___ All Calls
Doors to open if parked?	None __ Front __ Rear ___ Both	None __ Front __ Rear __ Both
Doors to Open on Main Fire?	Front ___ Rear __ Both	Front ___ Rear __ Both
Doors to Open on Alt. Fire?	Front ___ Rear __ Both	Front ___ Rear __ Both
Leave Doors Open on CTL	Yes No	Yes No
Limited Door Re-Open Option	Yes _ No	Yes _ No
Reduce HCT with Photo Eye	Yes _ No	Yes _ No
Leave Doors Open on EPI	Yes __ No	Yes __ No
Doors to open if No demand?	None __ Front __ Rear __ Both	None __ Front __ Rear __ Both
Const. Press Op. Bypass PHE?	Yes _ No	Yes No
Door Type is?	Horizontal ___ Vertical	Horizontal ___ Vertical
Front Door Mech. Coupled?	Yes _ No	Yes _ No
Rear Door Mech. Coupled?	Yes ___ No	$\ldots \mathrm{Yes}$ __ No
Prevent DCP Til Doors Close:	Yes __ No	Yes _ No
Moment D.C.B to Close Doors?	Yes ___ No	Yes _ No
Doors to Latch DOF?	None ___ Front __ Rear __ Both	None ___ Front __ Rear __ Both
Doors to Latch DCF?	None __ Front __ Rear __ Both	None __ Front __ Rear __ Both
Inv. Door Closed Limit?	None___ Front __ Rear ___ Both	None__ Front __ Rear ___ Both
TIMER		
Short Door Timer	_ seconds	_ seconds
Car Call Door Timer	_ seconds	___ seconds
Hall Call Door Timer	\ldots seconds	_ seconds
Lobby Call Door Timer	\ldots seconds	_ seconds
Nudging Timer	\ldots seconds	\ldots seconds
Time out of Service Timer	None____ seconds	None____ seconds
Motor Limit Timer	_ minutes	_ minutes
Valve Limit Timer	_ minutes	_minutes
Door Hold Input Timer	\ldots seconds	___ seconds
Parking Delay Timer	_ minutes	_ minutes
Fan/Light Output Timer	_ minutes	_ minutes
Hospital Emerg. Timer	_ minutes	_ minutes
Door Open Protection Timer	_ seconds	_ seconds
CTL Door Open Timer	_ seconds	_ seconds
Door Buzzer Timer	\ldots seconds	seconds
GONGS/LANTERNS		
Mounted in hall or car?	_ Hall __ Car	Hall __Car
Double strike on Down?	Yes ___ No	Yes___ No
PFG Enable Button?	Yes ___ No	Yes ___ No
Egress Floor Arrival Gong?	No Main Egress Floor =	_ No Main Egress Floor =
SPARE INPUTS		
SP1 used for:		
SP2 used for:		
SP3 used for:		
SP4 used for:		
SP5 used for:		
SP6 used for:		
SP7 used for:		
SP8 used for:		
SP9 used for:		
SP10 used for:		

OPTIONS		
MCE VALUES		
SP11 used for:		
SP12 used for:		
SP13 used for:		
SP14 used for:		
SP15 used for:		
SP16 used for:		
SP17 used for:		
SP18 used for:		
SP19 used for:		
SP20 used for:		
SP21 used for:		
SP22 used for:		
SP23 used for:		
SP24 used for:		
SP25 used for:		
SP26 used for:		
SP27 used for:		
SP28 used for:		
SP29 used for:		
SP30 used for:		
SP31 used for:		
SP32 used for:		
SP33 used for:		
SP34 used for:		
SP35 used for:		
SP36 used for:		
SP37 used for:		
SP38 used for:		
SP39 used for:		
SP40 used for:		
SP41 used for:		
SP42 used for:		
SP43 used for:		
SP44 used for:		
SP45 used for:		
SP46 used for:		
SP47 used for:		
SP48 used for:		
SP49 used for:		
OUT18 used for:		
OUT19 used for:		
OUT1 used for:		
OUT2 used for:		
OUT3 used for:		
OUT4 used for:		
OUT5 used for:		
OUT6 used for:		
OUT7 used for:		
OUT8 used for:		
OUT13 used for:		
OUSed for:		

OPTIONS	MCE VALUES	NEW VALUES
OUT20 used for:		
OUT21 used for:		
OUT22 used for:		
OUT23 used for:		
OUT24 used for:		
OUT25 used for:		
OUT26 used for:		
OUT27 used for:		
OUT28 used for:		
OUT29 used for:		
OUT30 used for:		
OUT31 used for:		
OUT32 used for:		
EXTRA FEATURES		
PI Output Type:	1 wire ___ Binary	1 wire ___ Binary
Floor Encoding Inputs?	Yes ___ No	Yes ___ No
Encode All Floors?	Yes _ No	Yes ___ No
Emergency Power Operation?	No Emergency Power Return Floor =	No Emergency Power Return Floor =
Light Load Weighing?	No Light Load Car Call Limit =	No Light Load Car Call Limit =
Photo Eye Anti-Nuisance?	No Consec Stops w/o PHE Limit =	No Consec Stops w/o PHE Limit =
Peripheral Device?	Yes ___ No	Yes ___ No
PA COM 1 Media:	\qquad None \qquad Serial Cable \qquad Line Driver \qquad Modem	\qquad None \qquad Serial Cable \qquad Line Driver \qquad Modem
PA COM 1 Device:	Personal Computer: \qquad CMS \qquad Graphic Display CRT-No Keyboard: Color CRT: \qquad Yes \qquad No CRT and Keyboard: Color CRT: \qquad Yes \qquad No	Personal Computer: CRT-No Keyboard: Color CRT: Yes _No CRT and Keyboard: Color CRT: Yes
PA COM 2 Media:	____ $\left.\begin{array}{l}\text { None } \\ \text { Line Driver } \quad \text { Serial Cable } \\ \text { Modem }\end{array}\right)$	_____None Line Driver \quad Serial Cable Modem
PA COM 2 Device:	Personal Computer: \qquad CMS \qquad Graphic Display CRT-No Keyboard: Color CRT: \qquad Yes \qquad No CRT and Keyboard: Color CRT: \qquad Yes \qquad No	Personal Computer: \qquad CMS \qquad Graphic Display CRT-No Keyboard: Color CRT: \qquad Yes \qquad No CRT and Keyboard: Color CRT: \qquad Yes \qquad No
PA COM 3 Media:	\qquad None \qquad Serial Cable \qquad Line Driver \qquad Modem	\qquad None \qquad Serial Cable \qquad Line Driver \qquad Modem
PA COM 3 Device:	Personal Computer: CRT-No Keyboard: Color CRT: Yes _ Yo CRT and Keyboard: Color CRT:_Yes __No	Personal Computer: \qquad CMS \qquad Graphic Display CRT-No Keyboard: Color CRT: \qquad Yes \qquad No CRT and Keyboard: Color CRT: \qquad Yes \qquad No
PA COM 4 Media:		_____Line Driver \quadSerial Cable Modem
PA COM 4 Device:	Personal Computer: \qquad CMS \qquad Graphic Display CRT-No Keyboard: Color CRT: \qquad Yes \qquad No CRT and Keyboard: Color CRT: \qquad Yes \qquad No	Personal Computer: \qquad CMS \qquad Graphic Display CRT-No Keyboard: Color CRT: \qquad Yes \qquad No CRT and Keyboard: Color CRT: \qquad Yes \qquad No
Automatic Floor Stop Option?	No Floor \# for Car to Stop at:	No Floor \# for Car to Stop at:
CC Cancel w/Dir. Reversal?	Yes	Yes _ No
Cancel Car Calls Behind Car?	_Yes ___ No	Yes ___ No
CE Electronics Interface?	Yes ___ No	Yes _ No
Massachusetts EMS Service?	No EMS Service Floor \#:	No EMS Service Floor \#:
Master Software Key	Activated __ Deactivated ___ Enabled	Activated __ Deactivated ___ Enabled
PI Turned off if No Demand?	Yes ___ No	Yes ___ No
Hospital Emerg. Operation (Car A)	\qquad Yes \qquad No	Yes \qquad No
Set Hospital Calls (Car A)?	Yes ___ No	Yes ___ No
Hospital Calls Frnt/FIr (Car A)?	1234567810111213141516171819 20212223242526272829303132	123456781011121314151617181920 212223242526272829303132
Hospital Calls Rear/FIr (Car A)?	1234567810111213141516171819 20212223242526272829303132	123456781011121314151617181920 212223242526272829303132
Hospital Emerg. Operation (Car B)	\qquad Yes \qquad No	\qquad Yes \qquad No

OPTIONS	MCE VALUES	NEW VALUES
Set Hospital Calls (Car B)?	Yes No	Yes No
Hospital Calls Frnt/FIr (Car B)?	1234567810111213141516171819 20212223242526272829303132	123456781011121314151617181920 212223242526272829303132
Hospital Calls Rear/FIr (Car B)?	1234567810111213141516171819 20212223242526272829303132	123456781011121314151617181920 212223242526272829303132
Fire Bypasses Hospital?	___ Yes _ No	Yes _ No
High Seed Delay After Run?	Yes __ No	Yes __ No
Single Speed A.C. Option?	Yes __ No	Yes _ No
Sabbath Operation?	Yes No	Yes No
UP Front Call?	1234567810111213141516171819 202122232425262728293031	$\begin{aligned} & 123456781011121314151617181920 \\ & 2122232425262728293031 \end{aligned}$
UP Rear Call?	1234567810111213141516171819 202122232425262728293031	$\begin{aligned} & 123456781011121314151617181920 \\ & 2122232425262728293031 \end{aligned}$
DOWN Front Call?	$\begin{aligned} & 23456781011121314151617181920 \\ & 212223242526272829303132 \end{aligned}$	23456781011121314151617181920 212223242526272829303132
DOWN Rear Call?	$\begin{aligned} & 23456781011121314151617181920 \\ & 212223242526272829303132 \\ & \hline \end{aligned}$	23456781011121314151617181920 212223242526272829303132
Leveling Sensors	Enabled __ Disabled	Enabled ___Disabled
KCE	Enabled __Disabled	Enabled __Disabled
Analog Load Weigher?	None __ MCE_K-Tech	None __ MCE_K-Tech
Ind. Bypass Security?	__ Yes _ No	Yes __ No
Ats. Bypass Security?	Yes __ No	Yes __ No
Car to Floor Return	Floor	Floor
Scrolling Speed	Slow __ Normal___ Fast	Slow __ Normal___ Fast
Low Oil Switch Contact	N.O.__N.C.	N.O.__N.C.
OFRP Between Flrs	Floor ___ Floor	___ Floor ___ Floor
ASME A17.1-2000 FEATURES		
Hoistway Access	Yes _ No	Yes No
Number of Motor Starters	1 - 2 - 3	-1 2 _ 3
Minimum Number of Motors	1 _ 2 _ 3	1 _ 2 _ 3
Soft-Stop Timer	Seconds	Seconds
Starter \#1 Type	Wye-Delta Solid State Across the Line	Wye-Delta ___ Across the Line
Y-D Transfer Timer	Seconds _ N/A	Seconds _ N/A
Y-D Open Transn. Timer	_ mSeconds _ N/A	$\mathrm{mSeconds} \quad \mathrm{N} / \mathrm{A}$
Up To Speed Timer	Seconds N/A	Seconds N/A
M Contactor Installed?	Yes ___ No	Yes _ No
Starter \#2 Type	\qquad Wye-Delta \qquad Across the Line \qquad Solid State \qquad None	\qquad Wye-Delta \qquad Across the Line \qquad Solid State \qquad None
Y-D Transfer Timer	Seconds _ N/A	Seconds _ N/A
Y-D Open Transn. Timer	_ mSeconds _ N/A	mSeconds _ $/ \mathrm{A}$
Up To Speed Timer	Seconds _ N/A	Seconds \quad N/A
M Contactor Installed?	Yes __ No	Yes _ No
Starter \#3 Type	Wye-Delta \quad Across the Line Solid State \quad None	Wye-Delta \quad Across the Line Solid State \quad None
Y-D Transfer Timer	Seconds _ N/A	Seconds _ N/A
Y-D Open Transn. Timer	_ mSeconds _ N/A	mSeconds $\quad \mathrm{N} / \mathrm{A}$
Up To Speed Timer	Seconds _ N/A	Seconds $\quad \mathrm{N} / \mathrm{A}$
M Contactor Installed?	Yes __No	Yes _ No
Starter Configuration	_ Sequential ___ Simultaneous ___ N/A	Sequential ___ Simultaneous
Multiple Valves	Yes No	Yes __ No
Speed > 150 FPM?	___ Yes ___ No	\ldots Yes __ No
PTHC Version 6.03.xxxx		

APPENDIX B NOMENCLATURE

Motion Control Engineering, Inc.		NOMENCLATURE
		Effective Date: 03/14/03 3 Pages
\#	PC BOARD	DESCRIPTION
1	HC-RB4	Traction Controller Main Relay Board
1	HC-RBH	Hydraulic Controller Main Relay Board
2	HC-Cl/O	Non Programmable Controller Call I/O Board
2	HC-Cl/O-E	Programmable Controller Call I/O Expander Board
3	HC-Pl/O	Non Programmable Controller Power I/O Board (Car A) (1)
3	HC-PCI/O	Programmable Controller Power And Call I/O Board
4	HC-PI/O	Non Programmable Controller Power I/O Board (Car B) (1)
6	HC-TAB	Traction Adapter Board
7	HC-RDRB	Rear Door Relay Board
8	HC-RD	Rear Door Logic Board (Car A) (1)
9	HC-RD	Rear Door Logic Board (Car B)
10	HC-DB-MOD	Front G.A.L. MOD Door Interface Board
11	HC-DB-MOD-R	Rear G.A.L. MOD Door Interface Board
12	HC-DPS	Door Power Supply Board
13	HC-PIX	Position Indicator Expander Board (Car A) (1)
14	HC-PIX	Position Indicator Expander Board (Car B)
15	HC-SRT	Suicide Relay Timing Board
16	HC-SCR	SCR Interface Board
17	HC-EQ	Earthquake Board
18	HC-IOX	I/O(8 Input / 8 Output) Expander Board (Car A) (1)
19	HC-IOX	I/O(8 Input / 8 Output) Expander Board (Car B)
20	HC-IOX	Additional I/O(8 Input / 8 Output) Expander Board (Car A) (1)
21	HC-IOX	Additional I/O(8 Input / 8 Output) Expander Board (Car B)
26	HC-DYNA	Dynalift Interface Board
27	MC-ACFR	AC Feedback Relay Board
28	IMC-GIO	General Turbo DF I/O Board
29	IMC-RB	Turbo DF Relay Board
30	HC-DB-MOM/H	Front G.A.L. MOM/MOH Door Interface Board
31	HC-DB-MOM/H-R	Rear G.A.L. MOM/MOH Door Interface Board
32	HC-OA	Output Adapter Board
33	IMC-RI	M/G Relay Interface Board
34	IMC-PRI	M/G Power Relay Interface Board
35	IMC-DIO	Digital I/O Board
36	IMC-DAS	Data Acquisition Board
37	HC-I4O	I/O(16 Input /4 Output) Expander Board (Car A) (1)
38	HC-14O	I/O(16 Input /4 Output) Expander Board (Car B)
39	HC-14O	Additional I/O(16 Input / 4 Output) Expander Board (Car A) ©
40	HC-14O	Additional I/O(16 Input /4 Output) Expander Board (Car B)
41	SCR-RI	SCR/AC Relay Interface Board

MCE Motion Control Engineering, Inc.		NOMENCLATURE
		Effective Date: 03/14/03 3 Pages
\#	PC BOARD	DESCRIPTION
42	SCR-PRI	SCR/AC Power Relay Interface Board
43	HC-LB	Lock Bypass Board
44	HC-GB	Gong Board
45	HC-GB	Additional Gong Board
46	HC-SIB	Selectable Input Buffer Board (Car A) (1)
47	HC-SIB	Selectable Input Buffer Board (Car B)
48	HC-RT	Relay Tester Board
49	IMC-ACIB	AC Baldor Interface Board
50	HC-DPS-MOM/H	Front G.A.L. MOM/MOH Door Interface and Power Supply Board
51	$\mathrm{HC}-\mathrm{ACI}$	AC Drive Interface Board
52	HC-ACIF	AC Flux Vector Interface Board
53	HC-DPS-MOM/H-R	Rear G.A.L. MOM/MOH Interface and Power Supply Board
54	IMC-MBX	IMC Enhanced Motherboard
55	SCR-RIX	SCR Relay Interface Extension Board
56	HC-HBF	A.S.M.E. Front Door Lock Bypass Board
57	HC-HBFR	A.S.M.E Front and Rear Door Lock Bypass Board
58	IMC-ACIM	AC MagneTek Interface Board
59	HC-TACH-MG	Tach Adjust Board for VVMC-MG Controller
60	HC-TACH-SCR	Tach Adjust Board for VVMC-SCR Controller
61	SC-SB2K	Main A17.1-2000 Compliant Relay Board
62	SC-HDIO	High Density I/O board for A17.1-2000
63	SC-BASE-D	Lock Bypass, Access, Overspeed and Emergency Brake Board used with DF controlers
64	SC-BASE	Lock Bypass, Access, Overspeed and Emergency Brake Board used with non-DF controllers
65	SC-BASER-D	Rear version of SC-BASE used with DF controllers
66	SC-BASER	Rear version of SC-BASE used with non-DF controllers
67	SC-SB2K-H	Hydraulic controller main relay board for A17.1 compliance
68	SC-BAH	Hydraulic controller Bypass/Access board
69	SC-BAHR	Hydraulic controller Bypass/Access/Rear Door board

(1) Individual group cars use board numbers for car A only

Page 3 of 3

\square	SCHEMATIC SYMBOLS

SYMBOL	DESCRIPTION	SYMBOL	DESCRIPTION

\begin{tabular}{|c|c|c|c|}
\hline X
\square

X \& BUS LOCATED ON PC BOARD \& $$
\begin{array}{|ccc|}
\hline \text { OFF } \\
\text { BOARD } \\
\text { SIDE }
\end{array} \longrightarrow \begin{aligned}
& \text { BOARD } \\
& \text { NUMBER }
\end{aligned}
$$ \& BOARD DESIGNATOR

\hline \& \& -® \& SOLDER CONNECTION ON REAR OF PC BOARD

\hline $$
\hat{y}
$$ \& BUS LOCATED OFF PC BOARD \& \& WRING INSIDE CONTROL CABINET

\hline
\end{tabular}

\square	MIR 0
∇	MI

P	pattern generator input
(8)	pattern generator safety input
(0)	POWER TERMINAL

\rightarrow ras
Tet

APPENDIX C
 ELEVATOR SECURITY INFORMATION AND OPERATION

Building name:
Building location:
Security activation: Key switch
Mon: from
to \qquad
or
Time clock
Tue: from \qquad to \qquad
Wed: from \qquad to \qquad
Thu: from
to \qquad
Fri: from \qquad
Sat: from
to \qquad
Sun: from
to \qquad
Instructions: To gain access to secured floors, follow the steps below while in the elevator car. The steps may be taken while the car is moving or standing still. Requests for a car from a hallway or corridor are answered without restriction.

1. While in the car, press the button for the desired floor. If the destination floor is secured, the button for that floor will flash on/off.

If the button for that floor stays solidly illuminated, that floor is unsecured.
2. While the destination floor button is flashing, enter the security code for that floor within 10 seconds. Enter the security code by pressing the corresponding buttons on the panel.

If the code was entered correctly and within the required time limit, the car will immediately go to that floor. If the code was not entered within the 10 -second time limit or was entered incorrectly, the destination floor button light will turn off after 10 seconds and the entire sequence must be repeated.

If a mistake is made while entering the security code, simply wait until the destination floor button light stops flashing and then start the entire sequence again.

SECURITY CODES

Maintain a record of the security codes by noting the floor name as found in the elevator cab and each floor's code. Any floor with a security code is a secured floor.

1.	Floor	security code	=	
2.	Floor	security code	=	
3.	Floor	security code	=	
4.	Floor	security code	=	
5.	Floor	security code	=	
6.	Floor	security code	=	
7.	Floor	security code	=	
8.	Floor	security code	=	
9.	Floor	security code	=	
10.	Floor	security code	=	
11.	Floor	security code	=	
12.	Floor	security code	=	
13.	Floor	security code	=	
14.	Floor	security code	=	
15.	Floor	security code	=	
16.	Floor	security code	=	
17.	Floor	security code	=	
18.	Floor	security code	=	
19.	Floor	security code	=	
20.	Floor	security code	=	
21.	Floor	security code	=	
22.	Floor	security code	=	
23.	Floor	security code	=	
24.	Floor	security code	=	
25.	Floor	security code	=	
26.	Floor	security code	=	
27.	Floor	security code	=	
28.	Floor	security code	=	
29.	Floor	security code	=	
30.	Floor	security code	=	
31.	Floor	security code	=	
32.	Floor	security code	=	

APPENDIX D

FLEX-TALK OPTION

NOTE: The following is a listing of diagnostic tools available on a controller if the Flex-Talk option is provided.

Use this addendum in conjunction with the manual. The addendum provides information regarding the diagnostics and volume adjustments for the TPI-FT option on the Flex-Talk unit.

1.0 INTRODUCTION AND THEORY OF OPERATION

The Flex-Talk board is designed for use on any MCE controller to provide flexibility in audio announcement. The TPI-FT board is installed inside the controller and hooked up to the last board of the daisy chain. The TPI-FT receives such needed information as door status, nudging, PI, etc. from the MCE bus. A 5 V power supply runs the digital circuitry, and a $-/+15 \mathrm{~V}$ supply operates the analog circuitry of the speaker. There are eight LED's used for diagnostic purposes in conjunction with the dip switches. The input and output connectors (J1 and J2) are used for the MCE bus; however, it is unlikely that the output will be used, as the Flex-Talk board is typically the last in the daisy chain. The exception being a duplex where there are two Flex-Talk boards.

FIGURE D. 1 Flex-Talk Board

2.0 DIAGNOSTICS

The six switches on the dip switch package are used for diagnostics purposes. There are eight LED's (D2 through D9) also, for displaying diagnostics information. These LED's are used in conjunction with the dip switch package (see below).For self-test, turn on switch S2 of the dip switch set. The unit will announce each of the floor messages, direction, nudging and fire service messages (special messages are not included in the self test). This test does not require connection of the MCE bus.

TABLE D. 1 Diagnostic Table

DIP SWITCHES					DIAGNOSTIC LEDS								MNEM.
S2	S3	S4	S5	S6	D2	D3	D4	D5	D6	D7	D8	D9	
1	0	0	0	0	SELF TEST								
0	0	0	0	0	UP	DOWN	NUDG	DOOR	MAIN FIRE	SAF	ALT FIRE	HOSP	MODSW
0	1	0	0	0	Pls DISPLAYED IN BINARY ($00=$ BOTTOM)								PIN
0	0	1	0	0	X	EM3A	EM2A	EM1A	DORA	GDA	GUA	PIA	MAW
0	1	1	0	0	Pls DISPLAYED IN BINARY ($00=$ BOTTOM)								IPR_3
0	0	0	1	0	$\begin{aligned} & \text { SEC. } \\ & \text { FLR } \end{aligned}$	HLW	EMP	X	X	X	X	X	SMAW1
0	1	0	1	0	$\begin{gathered} \text { STOP } \\ \text { SW } \end{gathered}$	OVS	LOBM	X	X	X	X	X	SMAW2
0	0	1	1	0	X	X	EMP	X	X	X	X	X	EMPWIN
0	1	1	1	0	UP	DOWN	NUDG	DLK	FRS	SAF	FRA	HOSP	ITR-1
0	0	0	0	1	PIO	P11	PI2	PI3	PI4	CSE	HLW	EPR	ITR-2
0	1	0	0	1	PI5	X	DOPLFR	X	X	$\begin{aligned} & \text { H OR } \\ & \text { (NOT) } \\ & \text { STC } \end{aligned}$	ATALT	ATMN	ITR-3

Dip switches - switches S2, S3, S4, S5, and S6 are used to select which flags on the TPI are to be displayed.

- switch S2 is used for self test.
- switch S1 is currently not used.
- $0=$ switch is "Off" and $1=$ switch is "On"

D2 thru D9: diagnostic LEDs located on the processor board. Illuminated LEDs indicate that one of the flags listed below D2 thru D9 on the above chart are read as active.

Example: If all switches are off, D4 \& D6 are turned on, then nudging and main fire service flags are on.

3.0 VOLUME CONTROL

Trimpots R32 and R33 adjust the main and alternate volume. The main volume adjustment (R32) controls the floor announcements (such as "First Floor"). The alternate volume (R33) controls all other announcements (such as "going up"). Turning either trimpot fully counterclockwise gives maximum volume. The adjustments are easily made with diagnostics switch S2-ON. This will activate the messages and allow the time necessary to adjust volume. These two trimpots do not effect any music volume that may be connected on J8. Music volume is set external of this unit.

4.0 TROUBLESHOOTING

If there are no audio messages, then:

- The speaker may not be connected on J9.
- The +/-15V supply on connector J7 may not be present.
- U39 relay may be defective.
- U38 (audio power op-amp) may be defective.
- U5 (program EPROM), U7 or U8 (digitized voice EPROM) may be defective.
- A volume control trimpot may be defective or turned fully clockwise.

If the message, "Please allow the doors to close" is heard when nudging:

- The photo eye used to detect objects in the door path may be blocked.
- The photo eye may be dirty, or defective.

5.0 PERIPHERAL EQUIPMENT

Square recessed mount $61 / 4$ " by $61 / 4^{\prime \prime}$ by $41 / 4 "$ (manufacturer Model \# 198-4).
Square surface mount 7" by 7" by 4 1/4" (manufacturer Model \# SE 198-4).
Circular recessed mount 6 1/8" by 4 1/4" without lip (manufacturer Model \# 94-4).
7 " round by 4 1/4" (including lip).
$73 / 8$ " in diameter with a circular grill.
FIGURE D. 2 Speaker Dimensions

APPENDIX E

LS-QUTE LANDING SYSTEM ASSEMBLY DRAWINGS

NOTE: If a sensor or the HC-IPLS board is replaced make sure the orientation of the HC-IPLS board is correct. Use the chassis ground and the LEDs shown in the figure below for an orientation reference.

FIGURE E. 1 LS QUTE Enclosure Assembly

D/N: 1207 R 2

SENSOR	HC-IPLS BOARD TERMINALS	
DZ1	DZ2 SENSOR	S18
DZX	SDZX	S18
DZ2	DZ1 SENSOR	S27
DZF	SDZF	S18
DZR	SDZR	S18
LD	SLD	S18
LU	SLU	S18
STD	STD	S2
STU	STU	S2
ISTD	ISTD	S2
ISTU	ISTU	S2
One 2 inch jumper	S18	S2

2AB Redundancy Fault message, 5-6
2AB Spare input, 5-50
2BI Redundancy Fault message, 5-15
4 BUS Cycle Test Fault message, 5-15

A

ABI, Alarm Bell Input option, 5-50
absolute floor encoding, 4-2
ABZ, Attendant Service Buzzer Output option, 5-55
ACCI Redundancy Fault message, 5-15
Alarm - 4 times in 60 secs message, 5-6
Alarm - Car not in DZ message, 5-6
ALT. PARKING FLOOR option, 5-43
ALV, Alive Input option, 5-50
ALV, Other car alive output flag, 5-35
ANALOG LOAD WEIGHER? option, 5-62
API, Alternate Parking Input flag, 5-35
API, Alternate Parking Input option, 5-50
ASME A17.1-2000 Fault Troubleshooting Tables, 6-25
Definitions for Flags and Variables, 6-28
Flags and Variables Added for ASME A17.1-2000, 6-28
Formatted SC-HDIO Board Input / Output Map, 6-29
Mnemonic Definitions for Inputs and Outputs, 6-30
Redundancy Fault Established Data Trap, 6-26
Redundancy Fault Established Map, 6-25
SC-HDIO Board Input Data Trap, 6-26
SC-HDIO Board Input Map, 6-27
ASME A17.1-2000 options
fault bypass mode, 5-74
ASME A17.1 2000 FEATURES MENU, 5-63
ATL Starter Sequence of Operation, 6-32
ATS. BYPASS SECURITY? option, 5-62
ATS, Attendant Service Input option, 5-50
Attendant Service Operation message, 5-6
AUTO, Emergency power auto output flag, 5-35
AUTO, Emergency Power Auto Selection Input option, 5-50
AUTOMATIC FLOOR STOP OPTION option, 5-60
AXR, Auxiliary Reset Input option, 5-51

B

BAB Redundancy Fault message, 5-6
BAB Spare input, 5-51
Basic Feature Menu options, 5-42, 5-43
Basic Security, 5-68
programming or changing the Security codes, 5-69
BFD, Bottom floor demand flag, 5-35
BFD/TFD error message, 5-36
Both USD \& DSD Inputs are Active message, 5-6
Both USD and DSD are Open message, 5-6, 6-21
Bottom Floor Demand message, 5-7, 6-21
Bottom Floor or Top Floor Demand message, 5-7
Brake Pick Failure message, 5-7
BSI, Building Security Input option, 5-51
Bus Fuse Blown (2) message, 6-21
Bus Fuse Blown (2C) message, 5-7
Bus Fuse Blown (2H) message, 5-10, 6-21
BYPASS STOP SW. ON PHASE 1 option, 5-44

C

call logic, troubleshooting, 6-10, 6-12
CANCEL CAR CALLS BEHIND CAR? option, 5-60
Capture For Test message, 5-7
Car Call Bus is Disconnected message, 5-7
Car Call Cancellation Output (900) option, 5-55
CAR CALL CANCELS DOOR TIME option, 5-45
CAR CALL DOOR TIMER option, 5-48
car calls, registering, 4-3
Car Communication Control (CCC), 1-14
Car Controller
Car Communication Control (CCC), 1-14
Car Operation Control (COC), 1-12
characteristics, 1-1
duplexing, 1-14
environmental considerations, 2-1
final adjustments, 4-4, 4-5
functional description, 1-12-14
functional layout, 1-13
ground wiring, 2-4, 2-5
initial adjustments, 3-2
installation of, 2-3
physical description, 1-1, 1-3, 1-9, 1-11
physical layout, 1-2
power phasing, 3-3
programming and diagnostic tools, 1-14
proper grounding, 2-4
site selection, 2-1
wiring, 2-3
wiring prints, 2-2
Car Controller Functional Layout, 1-13
CAR DOORS ARE WALK-THRU option, 5-42
CAR IDENTIFIER option, 5-43
Car in Test Mode message, 5-7
Car Operation Control (COC), 1-12
call logic troubleshooting, 6-10, 6-12
door logic troubleshooting, 6-4, 6-7-9
Car Out of Svc w/ DLK message, 6-21
Car Out of Svc w/o DLK message, 6-21
Car Out of Svc. w/ DLK message, 5-7
Car Out of Svc. w/o DLK message, 5-7
Car Safety Device Open message, 5-7
CAR SERVES FRNT/FLR 1 option, 5-42
CAR SERVES REAR/FLR 1 option, 5-42
Car to Floor Function message, 5-7
CAR TO FLOOR RETURN FLOOR option, 5-62
Car to Lobby Operation message, 5-8
Car Top Inspection message, 5-15
CC CANCEL W/DIR REVERSAL option, 5-60
CC, Car call flag, 5-35
CCA, Car call above flag, 5-35
CCB, Car call below flag, 5-35
CCC, Car call cancel input flag, 5-35
CCC, Car Calls Cancel Input option, 5-51
CCD, Car call disconnect flag, 5-35
CCDE, Car Call Disconnect Enable Output option, 5-55
CCH, Car call hold flag, 5-35
CCR, Car call flag (rear), 5-35
CCT, Car call time flag, 5-35
CCT, Car Call Time Flag Output option, 5-55
CCTR, Car call time flag (rear), 5-35
CD Redundancy Fault message, 5-15

CD, Car done flag, 5-35
CD, Car Done on Emergency Power Output option, 5-55
CDB Redundancy Fault message, 5-15
CDBR Redundancy Fault message, 5-16
CDR Redundancy Fault message, 5-16
CE ELECTRONICS INTERFACE option, 5-60
CFLT, CFLT Output option, 5-55
CGED, Car Gong Enable Down Output option, 5-55
CGEDR, CGED for rear doors Output option, 5-55
CGEU, Car Gong Enable Up Output option, 5-55
CGEUR, CGEU for rear doors Output option, 5-55
CGF, Car Generated Fault Output option, 5-55
CHBPO Spare output option, 5-55
CNFG, Configuration error flag, 5-35
CNP, Contactor Proof Input option, 5-51
Communication Loss message, 5-8, 6-21
Computer External Memory Chart, 5-66
Computer Internal Memory, 5-33, 5-34
computer security, 5-3, 5-4, 5-70
Passcode Request Operation, 5-70
entering the password, 5-4
Computer Variable Flags, 5-34
Configuration Error-change Settings Before Installation message, 5-8
CONST. PRESS OP. BYPASS PHE option, 5-47
CONT. D.C.B. FOR FIRE PH 1 option, 5-46
CONT. D.C.B. TO CLOSE DOORS option, 5-46
Contactor Failure to Pick message, 5-16
Contactor Proofing Redundancy Failure message, 5-8
COS1 Fault Message, 5-16
COS2 Fault message, 5-16
CSB, Car stop switch bypass flag, 5-35
CSB, Car Stop Switch Bypass Output option, 5-55
CSBR, Car stop switch bypass (rear) flag, 5-35
CSEO, Code Sequence Enable Output option, 5-55
CSR, Car Selected to Run Output option, 5-55
CT Cycle Test Fault message, 5-16
CTDIF Redundancy Fault message, 5-17
CTL DOOR OPEN TIMER option, 5-50
CTL, Car to lobby input flag, 5-35
CTL, Car-to-Lobby Input option, 5-51
CTLDOT, Car to lobby door open timer flag, 5-35
CTLDOT, Car-to-Lobby Door Open Timer Output option, 5-55
CTLF, Car to lobby function flag, 5-35
CTOS Redundancy Fault message, 5-17
CTP, Car to floor Input option, 5-51
CTST, Capture for test input flag, 5-35
CTST, Capture for Test Input option, 5-51
Cycle Test message, 5-17

D

D.C.B. CANCELS DOOR TIME option, 5-46

DBC, Door close button input flag, 5-35
DBCR, Door close button (rear) flag, 5-35
DBZF, Front Door Buzzer output option, 5-55
DBZR, Rear Door Buzzer output option, 5-55
DC, Down call flag, 5-35
DCA, Down call above flag, 5-35
DCB, Down call below flag, 5-35
DCC, Door close complete flag, 5-35
DCCR, Door close complete flag (rear), 5-35
DCF, Door close function output flag, 5-35
DCFR, Door close function output (rear) flag, 5-35
DCL Redundancy Fault message, 5-17
DCL, Door Close Limit Input option, 5-51

DCLC, Doors Closed Contact Input option, 5-51
DCLCR, Door close contact input (rear) flag, 5-35
DCLR Redundancy Fault message, 5-17
DCP, Door close power output flag, 5-35
DCPR, Door close power output (rear) flag, 5-35
DCR, Down call flag (rear) flag, 5-35
DDF, Double ding function flag, 5-35
DDP, Down direction preference flag, 5-35
DEADZ, Dead zone flag, 5-35
default parameter values, 5-38
DEL2, Delta output for Starter \#2 option, 5-55
DEL3, Delta output for Starter \#3 option, 5-55
DETS Redundancy Fault message, 5-17
DFV Redundancy Fault message, 5-17
DHEND, Door hold end flag, 5-35
DHEND, Door Hold End Output option, 5-55
DHEND2, Door hold end rear flag, 5-35
DHLD, Door hold input flag, 5-35
DHLD, Door Hold Input for Normal Service option, 5-51
DHLDI, Normal door hold input flag, 5-35
DHLDR, DHLD for Rear Doors option, 5-51
DHO, Door hold open flag, 5-35
DHO, Door Hold Output option, 5-56
DHOR, Door hold open flag (rear), 5-35
Diagnostic Mode, 5-4-6, 5-33, 5-34, 5-37
DIN, Door open inactive flag, 5-35
DIR. PREFERENCE UNTIL DLK option, 5-46
Direction Input Fault message, 5-17, 5-18, 5-25, 5-30-32
Direction Relay Redundancy Failure message, 5-8
dispatching features
dispatch load, 5-72
heavy load (hall call bypass), 5-72
light load (anti-nuisance), 5-72
overloaded, 5-72
DISPATCHING OPERATION option
Selective Collective, 5-42
Single Automatic Pushbutton, 5-42
Single Button Collective, 5-42
DLI, Dispatch Load Input flag, 5-35
DLI, Dispatch Load Input option, 5-51
DLK Redundancy Fault message, 5-18
DLK, Door lock input flag, 5-35
DLKS, Door lock store bit flag, 5-35
DLOB, Door Left Open Bell Output option, 5-56
DLW, Dispatch load weighing function flag, 5-35
DMD, Demand down flag, 5-35
DMU, Demand up flag, 5-35
DNDIR Redundancy Fault message, 5-18
DNDO, Down direction output flag, 5-35
DNENDR, Door Hold End Rear Output option, 5-55
DNI, Down Input (Attendant Service) option, 5-51
DNO, Down output (Attendant Service) option, 5-56
DNS Redundancy Fault message, 5-18
DNS, Down direction sense input flag, 5-36
DO1, DO2, DO4, DO8, DO16, D032 Binary coded P.I. outputs for digital P.I. devices option, 5-56
DOB, Door open button input flag, 5-36
DOBR, Door open button input (rear) flag, 5-36
DOC, Door open command flag, 5-36
DOCR, Door open command (rear) flag, 5-36
DOF, Door open function output flag, 5-36
DOFR, Door open function output (rear) flag, 5-36
DOI, Door open intent flag, 5-36
DOIR, Door open intent flag (rear), 5-36
DOL Open and DLK Active message, 6-21
DOL, Door open limit input flag, 5-36
DOLM, Door open limit memory flag, 5-36
DOLMR, Door open limit memory flag (rear), 5-36

DOLR, Door open limit (rear) flag, 5-36
DOOR BUZZER TIMER option, 5-50
Door Close Protection message, 5-8, 6-21
Door Close Protection Timer Elapsed message, 5-8
DOOR HOLD INPUT TIMER option, 5-49
DOOR LOGIC, 6-4
DOOR OPEN PROTECTION TIMER option, 5-49
Door Operation Menu options, 5-44-47
Door Position Monitor switch, 2-7
DOOR TYPE IS? HORIZONTAL / VERTICAL option, 5-48
Door Zone (DZ), 6-1
flag, 6-1
input, 6-1
Door Zone Input Fault message, 5-18, 5-19, 5-25, 5-26
Door Zone Sensor Failure - OFF Position message, 5-8
DOORS TO LATCH DCF? option, 5-48
DOORS TO LATCH DOF? option, 5-48
DOORS TO OPEN IF NO DEMAND option, 5-47
DOORS TO OPEN IF PARKED option, 5-47
DOORS TO OPEN ON ALT FIRE option, 5-47
DOORS TO OPEN ON MAIN FIRE option, 5-47
DOUBLE STRIKE ON DOWN option, 5-50
Down Fast Valve Fault message, 5-17, 5-25
Down Normal Limit Switch Open message, 5-18
Down Slow Valve Fault message, 5-25
DP Sensor / Differential Fault message, 5-18
DPD, Down previous direction flag, 5-36
DPM Redundancy Fault message, 5-18
DPM, Front Door Position Monitoring option, 5-51
DPMR Redundancy Fault message, 5-18
DPMR, Rear Door Position Monitoring option, 5-51
DPR, Door protection timer flag, 5-36
drawing numbers, description of, 2-2
Drive Failed to Respond message, 5-8
Drive Fault / REI Redundancy Fault message, 5-19
Drive Fault message, 5-8
DSD, Down slow down input flag, 5-36
DSH, Door shortening flag, 5-36
DSH, Door Time Shortening Output (intermediate) option, 5-56
DSHT, Door shortening flag , 5-36
DSHT, Door Time Shortening Front Output (final) option, 5-56
DSHTR, Door shortening flag (rear), 5-36
DSHTR, Door Time Shortening Front Output (rear) option, 5-56
DSTI, Door Stop Input option, 5-51
DSTIR, DSTI for rear doors option, 5-51
Duplexing, 5-75
DZ, Door zone input flag, 5-36
DZORDZ, Front or rear door zone input flag, 5-36
DZP, Door zone previous flag, 5-36
DZR, Door zone input (rear) flag, 5-36
DZRX Redundancy Fault message, 5-19
DZX Redundancy Fault message, 5-19

E

Earthquake - Reduced Speed Operation message, 5-9
Earthquake message, 5-8, 6-21
Earthquake Operation message, 5-8
EBR Button Fault message, 5-19
EBR Flickering Fault message, 5-19
EBR Stuck Fault message, 5-19
ECC, Excess car calls flag, 5-36
ECRN, Emergency Car Freeze Input option, 5-51
ECRN, Emergency car run flag, 5-36

ECRN, Emergency Power Car Run Output option, 5-56
EFG, Egress Floor Gong Output option, 5-56
EGRESS FLOOR ARRIVAL GONG option, 5-50
ELEVATOR POSITION, 5-33
Elevator Shutdown Switch Active message, 5-9
Emer. Terminal Sw. Failure message, 5-17, 5-32
Emergency Brake Activated message, 5-19
Emergency Brake Cycle Test Fault message, 5-20
Emergency Medical Service message, 5-9
Emergency Power message, 5-9, 6-21
Emergency Power Operation message, 5-9
EMERGENCY POWER OPERATION option, 5-59
EMERGENCY POWER RETURN FLOOR option, 5-59
EMSB, Emergency Medical Service Buzzer Output option, 5-56
EMSC, Emergency Medical Switch Car option, 5-51
EMSH, Emergency Medical Switch Hall option, 5-51
EMSIC, Emergency Medical Service Indicator Car Output option, 5-56
EMSIH, Emergency Medical Service Indicator Hall Output option, 5-56
ENCODE ALL FLOORS option, 5-58
End of Run Cycle Test Fault, 5-29
End of Run Cycle Test Fault message, 5-16, 5-20, 5-24
End of Run Cycle Test Flt message, 5-15
Enter Security Code message, 5-9
EP1, Emergency Power Phase 1 Output option, 5-56
EP2, Emergency Power Phase 2 Output option, 5-56
EPI, Emergency power input flag, 5-36
EPI, Emergency Power Input option, 5-52
EPR, Emergency power return flag, 5-36
EPR, Emergency Power Return Input option, 5-52
EPRUN, Emergency power run input flag, 5-36
EPRUN, Emergency Power Run Input option, 5-52
EPSTP, Emergency power stop input flag, 5-36
EPSTP, Emergency Power Stop Input option, 5-52
EQR Button Fault message, 5-20
EQR Flickering Fault message, 5-20
EQR Stuck Fault message, 5-20
ESBYP Cycle Test Fault message, 5-20
ESBYP Redundancy Fault message, 5-20
ESS, Elevator Shutdown Input option, 5-52
ETS1 Fault message, 5-21
ETS2 Fault message, 5-21
EXMLT Input Is Activated message, 5-9
EXMLT message, 5-9
EXMLT, External Motor Limit Timer flag, 5-36
EXMLT, External Motor Limit Timer Input option, 5-52
EXMLTC, Complimented EXMLT Input, 5-52
External Memory Chart, 5-66
External Memory mode, 5-64
Extra Features Menu options, 5-58-62

F

FAN/LIGHT OUTPUT TIMER option, 5-49
FCCC, Fire Phase 2 Call Cancel Button Input option, 5-52
FCCC, Fire phase 2 car call cancel flag, 5-36
FCHLD, Fire phase 2 hold flag, 5-36
FCHLD, Fire Phase 2 Switch HOLD Position Input option, 5-52
FCOFF, Fire phase 2 off flag, 5-36
FCOFF, Fire Phase 2 Switch OFF Position Input option, 5-52
FCS, Fire phase 2 input flag, 5-36
FCSM, Fire service phase 2 input memory flag, 5-36
FDC, Door fully closed phase 2 flag, 5-36

FDCR, Door fully closed phase 2 (rear) flag, 5-36
final adjustments
door operator, 4-4
final adjustments, 4-4, 4-5
hydraulic valves, 4-5
registering car calls, 4-3
slowdown and limit switches, 4-5
test mode operation, 4-3, 4-4
testing hall calls, 4-5
testing options, 4-5
FIR1, Fire Service Phase I output option, 5-56
FIRE BYPASSES HOSPITAL option, 5-61
FIRE PHASE 1 ALT. FLOOR option, 5-44
FIRE PHASE 1 MAIN FLOOR option, 5-43
FIRE PHASE I 2ND ALT. FLOOR option, 5-44
Fire Service Alternate message, 5-9, 6-21
Fire Service Main message, 5-9, 6-21
FIRE SERVICE MENU OPTIONS, 5-43
FIRE SERVICE OPERATION option, 5-43
Fire Service Phase 1 - Main message, 5-9
Fire Service Phase 1 -Alternate message, 5-9
Fire Service Phase 2 message, 5-9, 6-21
FIRE SVCE. CODE option, 5-44
Flags/Variables and Their Locations, 5-35
FLASH, Flash output option, 5-56
Flex-Talk option, A-11-A-13
diagnostics, $\mathrm{A}-12$
troubleshooting, A-13
FLO, Fan/Light Operation Output option, 5-56
FLOOR ENCODING INPUTS option, 5-58
FRA, Alternate Fire service phase 1 input flag, 5-36
FRAA, Fire Phase 1 Alternate (2nd alternate) Input option, 5-52
FRAON, Fire Phase 1 Alternate Switch ON Position Input option, 5-52
FRAS, Alternate fire flag, 5-36
FRBYP, Fire phase 1 bypass input flag, 5-36
FRBYP, Fire Phase 1 Switch BYPASS Position Input option, 5-52
FRC, Fire phase 2 flag, 5-36
FRC, Fire Service Phase 2 Output option, 5-56
FREE, No demand and in service flag, 5-36
FRM, Fire service phase 1 flag, 5-36
FRM, Fire Service Phase 1 Output option, 5-56
FRON, Fire phase 1 on input flag, 5-36
FRON, Fire Phase 1 Switch ON Position Input option, 5-52
FRON2, Fire Phase 1 Switch ON Position Input option, 5-52
Front DOL \& DLK are Both Active message, 5-9
Front Door Input Fault message, 5-15, 5-17, 5-18, 5-21, 5-24, 5-27
Front Door is Locked but not fully closed message, 5-9
Front Door Lock Switch Failure message, 5-10
FRONT DOOR MECH. COUPLED? option, 5-48
Front Door Open Limit Failure message, 5-10
Front Gate Switch Failure message, 5-10
FRS, Fire phase 1 input flag, 5-35
FRSA, Alternate Fire Service input option, 5-52
FRSM, Main Fire Service input option, 5-52
FRSS, Fire phase 1 flag, 5-35
FSA, Fire Service Alternate Output option, 5-56
FSM, Fire Service Main Output option, 5-56
FSO, Fire Service On Output option, 5-56
FSVC, True Fire Service Output option, 5-56
FULLY MANUAL DOORS option, 5-46
FWI, Fire warning indicator output flag, 5-35
FWL, Fire Warning Light Output option, 5-56

G

GED, Gong enable down output flag, 5-35
GEDR, Gong enable down output (rear) flag, 5-35
GEU, Gong enable up output flag, 5-35
GEUR, Gong enable up output (rear) flag, 5-35
GHT, Gong hold timer flag, 5-35
GHTR, Gong hold timer flag (rear), 5-35
Gongs/Lanterns Menu options, 5-50
GOV Redundancy Fault message, 5-21
Governor Switch Open message, 5-10
Graphic Display of Elevator (F3) Screen, 6-20
ground
ground test, 3-1
wiring, 2-4, 2-5
GS, Gate Switch Input option, 5-52
GSR, Gate Switch Rear Input option, 5-52
GTDE, Gong timer down enable flag, 5-35
GTUE, Gong timer up enable flag, 5-35

H

H Redundancy Fault message, 5-21
H, High speed output flag, 5-35
Hall and Car Call Buses Disconnected message, 5-10
Hall Call Bus is disconnected message, 5-10
HALL CALL DOOR TIMER option, 5-48
HC-CI/O-E Call Input/Output Board, 1-4 Quick Reference, 6-10
troubleshooting, 6-10, 6-12
HC-14O Input/Output Expander Board, 1-4
HC-IOX Input/Output Expander Board, 1-4
HC-PCI/O Power and Call Input/Output board, 1-3 Quick Reference, 6-2
HCDX, Hall call disconnect flag, 5-35
HCP, Hall call pushed output option, 5-56
HCR, Hall call reject flag, 5-35
HCR, Hall Call Reject Output option, 5-56
HCT, Hall call door time flag, 5-35
HCTR, Hall call door time flag (rear), 5-35
HD Redundancy Fault message, 5-21
HD, High speed delay flag, 5-35
HD, Hoistway Door Contact input option, 5-52
HDB Redundancy Fault message, 5-21
HDBR Redundancy Fault message, 5-21
HDR Redundancy Fault message, 5-22
HDR, Hoistway Door Contact Rear input option, 5-52
HDSC, Heat Detector Shutdown Complete Output option, 5-56
HEATD, Heat Detector Input option, 5-52
Heavy Load Weigher Condition message, 5-10
HIGH SPEED DELAY AFTER RUN option, 5-61
HLI, Heavy load input flag, 5-35
HLI, Heavy Load Input option, 5-52
HLW, Heavy load weigher flag, 5-35
HLW, Heavy Load Weigher Output option, 5-57
HML, Home landing input flag, 5-35
HML, Home Landing Input option, 5-52
Hoistway Access Input Flt message, 5-15, 5-22
Hoistway Access message, 5-22
HOISTWAY ACCESS? option, 5-63
Hoistway Safety Device Open message, 5-10
HONEYWELL FIRE OPERATION option, 5-44
HOSP, Hospital Emergency Operation Input option, 5-52
HOSP, In car hospital emergency input flag, 5-35
HOSPH2, Hospital emergency phase 2 flag, 5-35

Hospital Call and Eligibility, 5-67
Hospital Call and Eligibility Memory Chart, 5-67
HOSPITAL EMERG. OPERATION option, 5-60
HOSPITAL EMERG. TIMER option, 5-49
Hospital Phase 1 Operation message, 5-10
Hospital Phase 2 Operation message, 5-10
Hospital Service message, 5-10, 6-21
HSEL, Hospital service select flag, 5-35
HYD1-TR0, Hydro/Traction flag, 5-35

I

ILO1 Fault message, 5-22
ILO2 Fault message, 5-22
In Car Inspection message, 5-22
In Car Stop Switch Activated message, 5-10
IN Redundancy Fault message, 5-22
IN, Inspection or access input flag, 5-35
INA Spare input, 5-52
INAX Redundancy Fault message, 5-10
INCF, Independent service car call cancel flag, 5-35
INCTI Redundancy Fault message, 5-22
IND. BYPASS SECURITY? option, 5-62
IND, Independent service input flag, 5-35
Independent Service message, 5-10, 6-21
Independent Service Operation message, 5-10
INDFRC, Independent Service/Fire Service Phase 2 Output option, 5-57
INDN Redundancy Fault message, 5-23
INICI Redundancy Fault message, 5-23
INMR Redundancy Fault message, 5-23
Input/Output boards, 1-2
Inspection Input Fault message, 5-22, 5-23
Inspection message, 5-11, 6-22
Inspection operation, 3-3
Inspection Operation message, 5-11
INUP Redundancy Fault message, 5-23
INV. DOOR CLOSE LIMIT? option, 5-48
IRCOF, Front Infra Red Cutout input option, 5-52
IRCOR, Rear Infra Red Cutout input option, 5-52
ISR, In service and ready flag, 5-35
ISRT, In Service and Running Output option, 5-57
ISRT, In service truly flag, 5-35
ISV, In service flag, 5-35
ISV, In Service Output option, 5-57
IUL, In Use Light output option, 5-57

K

KCE ENABLE / DISABLE option, 5-62

L

landing system, 1-15 installation of, 2-5, 2-6 installation of magnets, 2-6
Landing System Redundancy Failure message, 5-11
LCD display, 5-5, 5-39, 5-40
LD, Level down input flag, 5-35
LEAVE DOORS OPEN ON CTL option, 5-47
LEAVE DOORS OPEN ON EPI option, 5-47
LEAVE DOORS OPEN ON PTI/ESS option, 5-46
Leveling Down message, 5-11
Leveling Input is absent message, 5-11
LEVELING SENSOR ENABLED/DISABLED option, 5-62
Leveling Sensor Failed - OFF Position message, 5-11

Leveling Sensor Failed - ON Position message, 5-11
Leveling Sensor Failure message, 5-11
Leveling up message, 5-11
LFP, Lower parking floor flag, 5-35
LIGHT LOAD CAR CALL LIMIT option, 5-59
Light Load Weigher Condition message, 5-11
LIGHT LOAD WEIGHING option, 5-59
limit switches, installation of, 2-5
limit switches, installation of, 2-5
LIMITED DOOR RE-OPEN OPTION option, 5-47
LLI, Light load input flag, 5-35
LLI, Light Load Input option, 5-52
LLW, Light Load Weigher Output option, 5-57
LLW, Light load weighing function input flag, 5-35
load weighing system
DLW (Dispatch load weigher threshold), 5-71
HLW (Heavy load weigher threshold), 5-71
LLW (Light load weigher threshold), 5-71
OLW (Overloaded car threshold), 5-71
OLW2(Overload weigher 2 threshold), 5-71
setting load thresholds, 5-71
LOBBY DOOR TIMER option, 5-48
LOBBY FLOOR option, 5-43
LOS, Low Oil Switch input option, 5-53
Lost DLK During Run message, 5-11, 6-22
LOT, Lobby door time flag, 5-35
LOTR, Lobby door time (rear) flag, 5-35
LOW OIL SWITCH CONTACT (N.O. / N.C.) option, 5-63
Low Oil Switch Input is Activated message, 5-11
LS-QUTE Landing System
assembly drawing, A-14
description of, 1-15
installation of, 2-6
wiring diagram, A-15
LSA Movement Failure message, 5-12
LU, Level up input flag, 5-35
LWB, Load Weigher Bypass input option, 5-53

M

M CONTACTOR INSTALLED? option, 5-63
M2, M output for Starter \#2 option, 5-57
M3, M output for Starter \#3 option, 5-57
MASS 524 CMR FIRE CODE? option, 5-44
MASSACHUSETTS EMS SERVICE option, 5-60
MASTER SOFTWARE KEY option, 5-60
MC-PA Peripherals Adapter Board, 1-9
Quick Reference, 6-15
setting parameters to default values, 5-38
MC-PCA Main Computer Board, 1-7, 1-8, 5-1-3
Quick Reference, 6-14
setting parameters to default values, 5-38
MECHANICAL SAFETY EDGE option, 5-46
MIN. NUMBER OF MOTORS $=(1-3)$ option, $5-63$
MISV, Mechanically In Service Output option, 5-57
MLT, Motor Limit Timer Elapsed Output option, 5-57
MLT, Motor limit timer flag, 5-35
MLTDO, Motor limit timer door open flag, 5-35
MLTP, Motor Limit Timer Elapsed Output option, 5-57
MLTP, Motor limit timer pilot flag, 5-35
MOMENT. D.C.B TO CLOSE DOORS? option, 5-48
MOMENT. D.O.B. DOOR OPENING option, 5-46
Motor Limit Timer (anti-stall) Elapsed message, 5-12
Motor Limit Timer message, 5-12, 6-22
MOTOR LIMIT TIMER option, 5-49
Motor Up to Speed Failure message, 5-23
MOUNTED IN HALL OR CAR option, 5-50

MPSAF Redundancy Fault message, 5-23
MULTIPLE VALVES? option, 5-64

N

NCD, Car Not Done with Emergency Power Return Output option, 5-57
NDGBPS, Nudging bypass flag, 5-35
NDGBPSR, Nudging bypass flag (rear), 5-35
NDGF, Nudging function flag, 5-35
NDS, Hall door timer non-shorten flag, 5-35
NDSR, Hall door timer non-shorten (rear) flag, 5-35
NEW YORK CITY FIRE PHASE 2 AND ANSI 89 option, 5-44
nomenclature, for PC boards, A-6, A-8
nomenclature, description of, 2-2
Normal Operation, 1-12
Normal Operation message, 5-12
NSI, Non-Stop Input (Attendant Service) option, 5-53
NUDG, Nudging output flag, 5-35
NUDGING DURING FIRE PH. 1 option, 5-45
NUDGING DURING FIRE PHASE 2 option, 5-46
NUDGING option, 5-44
NUDGING OUTPUT/BUZZER ONLY option, 5-46
NUDGING TIMER option, 5-49
NUDGR, Nudging output (rear) flag, 5-35
NUMBER OF AIOX BOARDS? option, 5-43
NUMBER OF I4O BOARDS option, 5-43
NUMBER OF IOX BOARDS option, 5-43
NUMBER OF MOTOR STARTERS= (1-3) option, 5-63
NYDS, New York door shortening flag, 5-35

0

OFR, One Floor Run Output option, 5-57
OFRP BETWEEN FLRS option, 5-63
OFRP One Floor Run Programmable output option, 5-57
OFRT One Floor Run Terminal output option, 5-57
OLW, Overloaded Car Threshold Output option, 5-57
OPERATION (DISPATCHING OPERATION) option, 5-42
options, setting to default values, 5-38
Overload Condition message, 5-12
Overspeed Fault message, 5-16, 5-21-23
OVL, Overload Input option, 5-53
OVL2, Overload 2 Input, 5-53

P

parameters, setting to default values, 5-38
PARKING DELAY TIMER option, 5-49
PARKING FLOOR option, 5-43
PASS REQ, Passcode Request message, 5-3, 5-4
Passcode Request message, 5-12
Passcode Request Option, 5-70
password, entering the computer security password, 5-4
PC boards, nomenclature for, A-6, A-8
PERIPHERAL DEVICE option, 5-59
PFG ENABLE BUTTON? option, 5-50
PFG, Passing floor gong output flag, 5-35
PFGE, Passing Floor Gong Enable Input option, 5-53
PFLT Fault message, 5-24
PFLT Relay Dropped message, 5-24
PH1, Fire Service Phase 1 Return Complete Output option, 5-57
PH1, Phase 1 return complete flag, 5-35
PHE, Photo eye input flag, 5-35

PHER, Photo eye input (rear) flag, 5-36
PHOTO EYE ANTI-NUISANCE option, 5-59
Photo Eye Failure message, 5-12, 6-22
PI OUTPUT TYPE option, 5-58
PI TURNED OFF IF NO DEMAND option, 5-60
PIC, PI correction flag, 5-36
PLD Cycle Test Fault message, 5-24
Power Transfer Input Active message, 5-12
Power Up Shut Down Due to Earthquake message, 5-12
PRE-OPENING option, 5-45
PRESSURE SWITCH ACTIVATED message, 5-12
PREVENT DCP TIL DOORS CLOSE? option, 5-48
PRIFLG, Priority Service Output option, 5-57
Program mode, 5-39, 5-40, 5-62, 5-67
PSS, Pressure Switch Input, 5-53
PTI, Power Transfer Input option, 5-53
pump motor
checking rotation, 3-3
wiring, 2-5

R

R2, Absolute floor encoding \#2 flag, 5-36
R2AB Redundancy monitoring input, 5-53
R3, Absolute floor encoding \#3 flag, 5-36
R4, Absolute floor encoding \#4 flag, 5-36
R4, R3, R2, Floor Encoding Input option, 5-53
RACC1 Redundancy Fault message, 5-24
RACC2 Redundancy Fault message, 5-24
RBAB Redundancy monitoring input, 5-53
RBRK Redundancy Fault message, 5-24
RCD Redundancy Fault message, 5-24
RCDR Redundancy Fault message, 5-25
RCT Redundancy Fault message, 5-25
RCTIC Redundancy Fault message, 5-25
RDEL1 Redundancy Fault message, 5-25
RDEL2 Redundancy Fault message, 5-25
RDEL2, Redundancy Delta-Contactor For Starter \#2 input option, 5-53
RDEL3 Redundancy Fault message, 5-25
RDEL3, Redundancy Delta-Contactor For Starter \#3 input option, 5-53
RDFV Redundancy Fault message, 5-25
RDFV, Redundancy Down Fast Valve input option, 5-53
RDN Redundancy Fault message, 5-25
RDSV Redundancy Fault message, 5-25
RDSV, Redundancy Down Slow Valve input option, 5-53
RDZ Redundancy Fault message, 5-25
RDZR Redundancy Fault message, 5-26
RDZX Redundancy Fault message, 5-26
Rear DOL \& DLK are Both Active message, 5-12
Rear Door Input Fault message, 5-16-18, 5-21, 5-22, 5-25-28
Rear Door is Locked but not fully closed message, 5-12
Rear Door Lock Switch Failure message, 5-12
REAR DOOR MECH. COUPLED? option, 5-48
Rear Door Open Limit Failure message, 5-12
Rear Gate Switch Failure message, 5-13
REAR, Rear door flag, 5-36
REB1 Redundancy Fault message, 5-26
REB2 Redundancy Fault message, 5-26
Red. Access Input Fault message, 5-24, 5-26, 5-30
Red. Emergency Brake Fault message, 5-26
Red. Inspection Input Fault message, 5-25, 5-26, 5-28
REDUCE HCT WITH PHOTO EYE option, 5-47
Redundancy Door Lock Relay Failure message, 5-13
Redundancy Front Gate Switch Failure message, 5-13

Redundancy Rear Gate Switch Failure message, 5-13
REI Redundancy Fault message, 5-19, 5-26
relevel operation, description, 4-5
REO, Re-Open Input option, 5-53
RESBYP Redundancy Fault message, 5-27
RETIRING CAM option, 5-45
RFR Button Fault message, 5-27
RFR Flickering Fault message, 5-27
RFR Stuck Fault message, 5-27
RH Redundancy Fault message, 5-27
RHD Redundancy Fault message, 5-27
RHDB Redundancy Fault message, 5-27
RHDBR Redundancy Fault message, 5-27
RHDR Redundancy Fault message, 5-28
RIN1 Redundancy Fault message, 5-28
RIN2 Redundancy Fault message, 5-28
RINAX Redundancy monitoring input, 5-53
RLULD Redundancy Fault message, 5-28
RM1 Redundancy Fault message, 5-28
RM2 Redundancy Fault message, 5-28
RM2, Redundancy M-Contactor For Starter \#2 input option, 5-53
RM3 Redundancy Fault message, 5-28
RM3, Redundancy M-Contactor For Starter \#3 input option, 5-53
RMR Redundancy Fault message, 5-28
ROFRT Redundancy Fault message, 5-28
RPLT Redundancy Fault message, 5-29
RPLT, Redundant Pilot Relay input option, 5-53
RPM Redundancy Fault message, 5-29
RPT Redundancy Fault message, 5-29
RSAFM Redundancy Fault message, 5-29
RSAFR Cycle Test Fault message, 5-29
RSAFR Redundancy Fault message, 5-29
RSTOP Redundancy Fault message, 5-30
RSYNC Redundancy Fault message, 5-30
RSYNC Redundancy monitoring input, 5-53
RTBAB Redundancy Fault message, 5-30
RUDX1 Redundancy Fault message, 5-30
RUDX2 Redundancy Fault message, 5-30
RUDX3 Redundancy Fault message, 5-30
RUDX4 Redundancy Fault message, 5-30
RUFV Redundancy Fault message, 5-30
RUFV, Redundancy Up Fast Valve input option, 5-53
Run Pump Motor Fault message, 5-29
RUN, Run flag, 5-36
RUP Redundancy Fault message, 5-31
RUSV Redundancy Fault message, 5-31
RUSV, Redundancy Up Slow Valve input option, 5-53
RWYE1 Redundancy Fault message, 5-31
RWYE2 Redundancy Fault message, 5-31
RWYE2, Redundancy Wye-Contactor For Starter \#2 input option, 5-54
RWYE3 Redundancy Fault message, 5-31
RWYE3, Redundancy Wye-Contactor For Starter \#3 input option, 5-54

s

SAB, Sabbath input flag, 5-36
SAB, Sabbath Operation Input option, 5-54
Sabbath Operation Active message, 5-13
SABBATH OPERATION option, 5-62
SAFC Redundancy Fault message, 5-31
Safety Circuit is Open message, 5-13
Safety String Open message, 5-13, 6-22
SAFH Redundancy Fault message, 5-31

SC-BAH Lock Bypass, Access Board Quick Reference, 6-17
SC-BAH Lock Bypass, Access, Overspeed, Emergency Brake board, 1-5
SC-BAHR Lock Bypass Access Board with Rear Doors, 1-6
SC-BAHR Lock Bypass, Access Board with Rear Doors Quick Reference, 6-18
SC-HDIO High Density I/O Board, 1-7
Quick Reference, 6-16
SC-SB2K-H Main Safety Relay Board, 1-10
Quick Reference, 6-3
SCE, Stepping correction enable flag, 5-36
schematic symbols, description of, 2-2
SCROLLING SPEED option, 5-63
SD, Supervisory down flag, 5-36
SDA, Down direction arrow flag, 5-36
SDT, Short door time flag, 5-36
SDTR, Short door time flag (rear), 5-36
SE, Safety edge input flag, 5-36
SE, Safety Edge input option, 5-54
SEC, Security Code Incorrect output option, 5-57
SECONDARY PARKING FLOOR option, 5-43
security, 5-3
SEQUENTIAL DOOR OPER. (F/R) option, 5-45
SER, Safety edge input (rear) flag, 5-36
set parameters to default values, 5-38
SHORT DOOR TIMER option, 5-48
Shutdown Operation message, 5-13
SIMP, Simplex Input option, 5-54
SIMPLEX OR DUPLEX option, 5-42
SIMPO, Simplex Output option, 5-57
SLV, Stable slave flag, 5-36
Soft Stop operation, 4-5
SOFT-STOP TIMER = option, 5-63
Solid State Starter Sequence of Operation, 6-33
Spare Inputs Menu options, 5-50
SPARE OUTPUTS MENU OPTIONS, 5-55
Special Events Calendar
Display Special Event Entries (F7-1) Screen, 6-21
Special Events Calendar Messages, 6-21
Special Operations, 1-12
SPEED > 150 FPM? option, 5-64
SST, Soft stop timer flag flag, 5-36
Starter \#1 Fault message, 5-25, 5-31
STARTER \#1 TYPE: option, 5-63
Starter \#2 Fault message, 5-25, 5-31
STARTER \#2 TYPE: option, 5-63
Starter \#3 Fault message, 5-25, 5-31
STARTER \#3 TYPE: option, 5-63
STARTER CONFIG: (SEQUENTIAL / SIMULTANEOUS) option, 5-63
Starter Fault Relay Dropped message, 5-31
Starters
ATL Starter Sequence of Operation, 6-32
sequence of operation flowcharts, 6-31-33
Solid State Starter Sequence of Operation, 6-33
WYE - DELTA starter, 3-3
WYE - DELTA Starter Sequence of Operation, 6-31
STARTIN, Start Input option, 5-54
Status Indicators, 5-1
STC, Stepping complete flag, 5-36
STD/R0, Step down input/absolute floor encoding \#0 flag, 5-36
Stop SW/Safety Relay Ckt message, 5-10, 6-22
STU/R1, Step up input/absolute floor encoding \#1 flag, 5-36
Stuck Door Zone Input message, 5-8

Stuck Leveling Input message, 5-11
STUCK PHOTO EYE PROTECTION option, 5-45
SU, Supervisory up flag, 5-36
SUA, Up direction arrow flag, 5-36
SYNC, Synchronization Output option, 5-58
Synchronization Operation message, 5-13
SYNCI, Synchronization Input option, 5-54
System mode, 5-68, 5-70
System Out of Service message, 5-13, 6-22

T

TEMPB, Temporary bit flag, 5-36
Test mode operation, 4-3
Test mode, description, 4-3
TEST Redundancy Fault message, 5-31
TEST, Test switch input flag, 5-36
TEST, Test Switch Input option, 5-54
TFA, Timing function active flag, 5-36
TFAR, Timing function active (rear) flag, 5-36
TFD, Top floor demand flag, 5-36
Time Out of Service message, 5-13, 6-21
TIME OUT OF SVCE. TIMER option, 5-49
Timer Menu options, 5-48, 5-50
Top Floor Demand message, 5-7, 6-22
TOP LANDING SERVED option, 5-42
TOS, Time Out of Service Output option, 5-58
TOS, Timed out of service flag, 5-36
TPI-FT, Flex-Talk Board
PC board layout, A-11
Troubleshooting
ASME A17.1-2000 Fault Troubleshooting Tables, 6-25-30
call circuits, 6-9-11
call logic, 6-8, 6-9, 6-12
car does not move, 6-13
Car Operation Control (COC), 6-12
car status display, 6-20
Door Closing Sequence, Timing and Fault Generation Flowchart, 6-5
door logic, 6-4, 6-7, 6-8
Door operation flowchart, 6-5
Door Operation Timing Diagram, 6-7
duplexing, 5-75
HC-CI/O, Call Input/Output Board, 6-10
hoistway graphic display, 6-21
MC-PA-2K Peripherals Adapter Board, 6-15
MC-PCA-OA2K Main Computer Board, 6-14
SC-BAH Board Quick Reference, 6-17
SC-BAHR Board Quick Reference, 6-18
SC-HDIO High Density I/O Board, 6-16
SC-SB2K-H Main Safety Relay Board, 6-3
Special Events Calendar Messages, 6-22
tracing signals, 6-1, 6-2
using computer internal memory, 5-34
using External Memory mode, 5-65
using the CRT terminal, 6-19, 6-22

U

UC, Up call flag, 5-36
UCA, Up call above flag, 5-36
UCR, Up call flag (rear), 5-36
UDP, Up direction preference flag, 5-36
UETS Redundancy Fault message, 5-32
UFP, Upper parking floor flag, 5-36

UFQ, Up first qualifier flag, 5-36
UFV Redundancy Fault message, 5-32
UNL Redundancy Fault message, 5-32
UNLS, Up Normal Limit Switch input option, 5-54
Up Fast Valve Fault message, 5-30, 5-32
Up Normal Limit Switch Open message, 5-32
UP TO SPEED TIMER= option, 5-63
UPD, Up previous direction flag, 5-36
UPDIR Redundancy Fault message, 5-32
UPDO, Up direction output flag, 5-36
UPI, Up Input (Attendant Service), 5-54
UPO, Up Output (Attendant Service) option, 5-58
UPS Redundancy Fault message, 5-32
UPS, Up direction sense input flag, 5-36
USD, Up slow down input flag, 5-36
UTS Redundancy Fault message, 5-32
UTS1, Motor \#1 Up To Speed input option, 5-54
UTS2, Motor \#2 Up To Speed input option, 5-54
UTS3, Motor \#3 Up To Speed input option, 5-54

V

Valve Limit Timer (Anti-stall) Elapsed message, 5-13
Valve Limit Timer message, 5-13, 6-22
VALVE LIMIT TIMER option, 5-49
VCA, Viscosity active flag, 5-36
VCI, Viscosity Control Input option, 5-54
VCI, Viscosity Input flag, 5-36
VEU, Up Valve Enable output option, 5-58
Viscosity Control Function message, 5-13
VLT, Valve limit timer flag, 5-36

W

WHITE PLAINS, NY FIRE CODE option, 5-44
wiring
controller wiring, 2-3
ground wiring, 2-4, 2-5
main AC power, 2-5
pump motor, 2-5
wiring prints, description of, 2-2
WLD, Emergency Dispatch Input option, 5-54
WLDI, Wildop Indication Output option, 5-58
WYE - DELTA Starter Sequence of Operation, 6-31
WYE2, Wye output for Starter \#2 option, 5-58
WYE3, Wye output for Starter \#3 option, 5-58

\boldsymbol{X}

XDSA, Auxiliary Supervisory Down Arrow output option, 5-58
XPI1-XPI7, Auxiliary Position Indicators 1 thru 7 output option, 5-58
XSUA, Auxiliary Supervisory Up Arrow output option, 5-58

Y

Y-D OPEN TRANSN. TIMER= option, 5-63
Y-D TRANSFER TIMER= option, 5-63

Z

ZADJ, Zero Adjust output option, 5-58

